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Enabling Visual Action Planning for Object

Manipulation through Latent Space Roadmap
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Abstract—We present a framework for visual action plan-
ning of complex manipulation tasks with high-dimensional state
spaces, focusing on manipulation of deformable objects. We
propose a Latent Space Roadmap (LSR) for task planning
which is a graph-based structure globally capturing the system
dynamics in a low-dimensional latent space. Our framework
consists of three parts: (1) a Mapping Module (MM) that maps
observations given in the form of images into a structured
latent space extracting the respective states as well as generates
observations from the latent states, (2) the LSR which builds and
connects clusters containing similar states in order to find the
latent plans between start and goal states extracted by MM, and
(3) the Action Proposal Module that complements the latent plan
found by the LSR with the corresponding actions. We present
a thorough investigation of our framework on simulated box
stacking and rope/box manipulation tasks, and a folding task
executed on a real robot.

I. INTRODUCTION

In task and motion planning, it is common to assume that

the geometry of the scene is given as input to the planner.

In contrast, modern representation learning methods are

able to automatically extract state representations directly

from high-dimensional raw observations, such as images or

video sequences [1]. This is especially useful in complex

scenarios where explicit analytical modeling of states is

challenging, such as in manipulation of highly deformable

objects which is recently gaining increasing attention by the

research community [2], [3]. In these manipulation tasks, the

state of the object cannot be easily established in a unique

manner as opposed to manipulation of rigid objects, where

their configuration can be made analytically explicit.

Unsupervised State Representation Learning. Given raw

observations, state representation learning is commonly per-

formed in an unsupervised way using for example Autoen-

coders (AEs) [4] or Variational Autoencoders (VAEs) [5]. In

these frameworks, two neural networks – an encoder and a

decoder – are jointly trained to embed the input observation

into a low-dimensional latent space, and to reconstruct it given

a latent sample. The resulting latent space can be used as a
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Fig. 1: Examples of visual action plans for a stacking task (top), a
rope/box manipulation task (middle) and a shirt folding task (bottom).

low-dimensional representation of the state space, where the

encoder acts as a map from a high-dimensional observation

(an image) into the lower-dimensional state (a latent vector).

However, to be useful for planning, it is desirable to

have a particular structure in the latent space: states that

are similar should be encoded close to each other, while

different states should be separated. Such information does

not always coincide with the similarity of the respective

images: two observations can be significantly different with

respect to a pixel-wise metric due to task-irrelevant factors

of variation such as changes in the lighting conditions and

texture, while the underlying state of the system (e.g., the

shape and the pose of the objects) may be identical. The

opposite is also possible: two observations may be relatively

close in the image space, because the respective change in

the configuration of the scene does not significantly affect the

pixel-wise metric, while from the task planning perspective

the two states are fundamentally different.

Challenges of State Representation Learning for Planning.

For planning, the system dynamics should also be captured in

the latent space. We therefore identify three main challenges

when modeling the state space representation for planning: i)

it needs to be low dimensional, while containing the relevant

information from high-dimensional observations; ii) it needs to

properly reflect similarities between states; and iii) it needs to

efficiently capture feasible transitions between states allowing

complex tasks such as deformable object manipulation.

In this work, we address i) by extracting the low-

dimensional states directly from images of the scene through

a Mapping Module (MM). For this, we deploy a VAE
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framework and compare it to AE. We address ii) by explicitly

encouraging the encoder network to map the observations that

correspond to different states further away from each other

despite their visual similarity. This is done by providing a

weak supervision signal: we record a small number of actions

between observation pairs, and mark the observations as

“same” or “different” depending on whether or not an action

is needed to bring the system from one state to the successor

one. We use this action information in an additional loss term

to structure the latent space accordingly. Finally, we tackle

iii) by building the Latent Space Roadmap (LSR), which is

a graph-based structure in the latent space used to plan a

manipulation sequence given a start and goal image of the

scene. The nodes of this graph are associated with the system

states, and the edges model the actions connecting them. For

example, as shown in Fig. 1, these actions can correspond

to moving a box or a rope, or folding a shirt. We identify

the regions containing the same underlying states using

hierarchical clustering [6] which accounts for differences in

shapes and densities of these regions. The extracted clusters

are then connected using the weak supervision signals.

Finally, the action specifics are obtained from the Action

Proposal Module (APM). In this way, we capture the global

dynamics of the state space in a data-efficient manner without

explicit state labels, which allows us to learn a state space

representation for complex long-horizon tasks.

Contributions. Our contributions can be summarized as:

1) We define the Latent Space Roadmap that enables to

generate visual action plans based on weak supervision;

2) We introduce an augmented loss function with dynamic

parameter to favourably structure the latent space;

3) We validate our framework on simulated box stacking

tasks involving rigid objects, a combined rope and

box manipulation task involving both deformable and

rigid objects, and on a real-world T-shirt folding task

involving deformable objects. Complete details can be

found on the website1.

This work is an extensively revised version of our earlier

conference paper [7], where we first introduced the notion

of Latent Space Roadmap. The main novelties of the present

work with respect to [7] are: i) extension of the LSR build-

ing algorithm with an outer optimisation loop improving its

performance, ii) new training approach for the MM with a

dynamic adjustment of the key hyperparameter used in the

additional loss term, iii) large scale simulation campaigns

investigating the effect of the additional loss term and hy-

perparameter choices, iv) restructuring of the framework into

three main components leading to a more modular setup, v)

introduction of a more challenging box stacking task and a task

involving manipulation of a rope and two boxes, enabling a

thorough ablation study on all components of our framework,

vi) comparison with the state-of-the-art solutions in [8] and [9]

on the simulation tasks as well as comparison of the improved

framework with its predecessor [7] on the T-shirt folding

task performed on a real robot, vii) comparison with other

1https://visual-action-planning.github.io/lsr-v2/

potentially suitable clustering algorithms used to build the

LSR, viii) comparison of VAE and AE for the mapping

module, ix) comparison of different realizations of the APM.

II. RELATED WORK

Methods for planning in complex scenarios in which the

system state cannot be analytically established can be divided

into two main categories based on where the planning is

performed: i) directly in a high-dimensional image space and

ii) in low-dimensional latent space. Belonging to i), a visual

foresight framework was designed in [10] where a video

prediction model based on Long-Short Term Memory blocks

was employed to predict stochastic pixel flow from frame

to frame. Trained on video, action and state sequences, the

model provides an RGB prediction of the scene that is then

used to perform visual model predictive control. The data was

collected using ten identical real world setups with different

camera angles. To tackle long-horizon tasks, Reinforcement

Learning (RL) combined with graph search over replay buffer

was proposed in [11] and validated with a visual navigation

task. Planning in the image space has also been successfully

applied to deformable objects as in [12], where the manipula-

tion of a rope from an initial start state to a desired goal state

was analyzed. In particular, a visual foresight plan is produced

containing the intermediate steps to deform the rope using a

Context Conditional Causal InfoGAN (C3IGAN). To this aim,

the results of [13] were exploited where 500 hours worth of

data collection were used to learn the rope inverse dynamics.

To mitigate the time burden of collecting data on real robots,

simulators with deformable objects have also been employed,

for example, in [14], where a custom fabric simulator [15] was

used to learn fabric dynamics building on the visual foresight

model [10]. The learned dynamic models are reusable and

can be applied to different tasks given a single image goal-

conditioned policy. In [16] the authors employed model free

RL algorithms trained in simulation in an end-to-end manner

by resorting to expert demonstrations. Optimal expert demon-

strations were also exploited in [17] to derive a controller

based on random forests.

In contrast, planning in a low-dimensional latent state space

significantly reduces the complexity of the input image space,

albeit introducing the challenges for capturing the global

structure and dynamics of the system in the latent space dis-

cussed in Sec. I. Embed-to-Control [18] pioneers in learning a

latent linear dynamical model for planning continuous actions.

Variational inference was used to infer a latent representation

and dynamical system parameters to reconstruct a sequence

of images. In addition to estimating transition and observation

models, [9] proposed a deep planning network which also

learns a reward function in the latent space. The latter was then

used to find viable trajectories resorting to a Model Predictive

Control (MPC) approach. A comparison between our method

and a baseline inspired by this approach can be found in

Sec. IX-C1.

RL in the latent space was applied in [19], where a VAE

encodes trajectories into the latent space that is optimized

to minimize the KL-divergence between the proposed latent
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plans and those that have been encountered during self-play

exploration. Long-horizon visual planning was instead the

focus of [20], which introduced latent space goal-conditioning

to carry out long-horizon planning by reducing the search

space and performing hierarchical optimization.

The low dimensionality of the latent embeddings also en-

ables the employment of traditional planning strategies in the

latent space. In this regard, a framework for global search in

a latent space was designed in [21] which is based on three

components: i) a latent state representation, ii) a network to

approximate the latent space dynamics, and iii) a collision

checking network. Motion planning is then performed directly

in the latent space by an RRT-based algorithm. In [22] the

same authors combined the insights of RRT-based search in the

latent space with the self play in [19] and introduce Broadly-

Exploring Local-policy Trees that produce long-horizon, se-

quential plans via a model-based, task-conditioned tree search.

Imitation learning was instead leveraged in [23]. In particular,

a latent space Universal Planning Network was designed

in [23] to embed differentiable planning policies. The process

is learned in an end-to-end fashion from imitation learning

and gradient descent is used to find optimal trajectories.

Alternatively, a motion planning network with active learning

procedure was developed in [24] to reduce the data for training

and actively ask for expert demonstrations only when needed.

Graph structures have also been employed in the literature

to perform planning in the latent space. In this regard, a

graph neural network (GNN) was used in [25] to model the

relations and transitions given the representations of objects in

the scene, which were obtained with contrastive learning and

Convolutional Neural Network (CNN). Moreover, combining

RL with the idea of connecting states in the latent space

via a graph was proposed in Semi-Parametric Topological

Memory (SPTM) framework [8], where an agent explores the

environment and encodes observations into a latent space using

a retrieval network. Each encoded observation forms a unique

node in a memory graph built in the latent space. This graph

is then used to plan an action sequence from a start to a

goal observation using a locomotion network. As discussed

in Sec. IX-C1, where we compare our method with the SPTM

framework, the latter is optimized for the continuous domain

with action/observation trajectories as input and builds on the

assumption that each observation is mapped to a unique latent

code. The work in [26] builds upon SPTM by additionally

leveraging temporal closeness of the subsequent observations

in the trajectories, while the study in [27] performs merging

of the same underlying states using a two-way consistency

criterion.

Latent representations are also suitable for tasks considering

deformable objects as these are intrinsically hard to model

analytically. In [28], contrastive learning was used to learn

a predictive model in the latent space for planning rope

and cloth flattening actions. In addition, [29] proposed a

feedback latent representation framework for semantic soft

object manipulation using geodesic path-based algorithms to

perform planning in the latent space.

In this work, we leverage weak labels extracted from

demonstrated actions in the dataset to capture the global

structure of the state space and its dynamics in a data-

efficient manner. More specifically, we build a graph in a low-

dimensional latent state space to perform planning for rigid

and deformable object manipulation tasks.

III. PROBLEM STATEMENT AND NOTATION

Variable Meaning

I Space of observations, i.e., images

U Space of actions

Z Low-dimensional latent space

PI , Pu, Pz Planned sequence of images, actions and

latent states from assigned start and goal

observations, respectively

Zi
sys Covered region i of the latent space

Zsys Overall covered region of the latent space

ρ Specifics of the action that took place be-

tween two images I1 and I2
TI , Tz Datasets containing image tuples (I1,I2,ρ)

and their embeddings (z1,z2,ρ), respectively

ξ Latent mapping function from I to Z
ω Observation generator function from Z to I
dm Minimum distance encouraged among action

pairs in the latent space

p Metric Lp

τ Clustering threshold for LSR building

cmax Maximum number of connected components

of the LSR

Nεz (z) The εz-neighbourhood of a covered state z
containing same covered states

εi εz associated with all the states in the cov-

ered region Zi
sys, i.e. εi = εz ∀z ∈ Zi

sys

Table I: Main notations introduced in the paper.

The goal of visual action planning, also referred to as

“visual planning and acting” in [12], can be formulated

as follows: given start and goal images, generate a path as

a sequence of images representing intermediate states and

compute dynamically valid actions between them. We now

formalize the problem and provide notation in Table I.

Let I be the space of all possible observations of the

system’s states represented as images with fixed resolution

and let U be the set of possible control inputs or actions.

Definition 1: A visual action plan consists of a visual

plan represented as a sequence of images PI = {Istart =
I0, I1..., IN = Igoal} where Istart, Igoal ∈ I are images

capturing the underlying start and goal states of the system,

respectively, and an action plan represented as a sequence of

actions Pu = {u0, u1, ..., uN−1} where un ∈ U generates a

transition between consecutive states contained in the obser-

vations In and In+1 for each n ∈ {0, ..., N − 1}.

To retrieve the underlying states represented in the observa-

tions as well as to reduce the complexity of the problem we

map I into a lower-dimensional latent space Z such that each

observation In ∈ I is encoded as a point zn ∈ Z extracting

the state of the system captured in the image In. We call this

map a latent mapping and denote it by ξ : I → Z . In order
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Fig. 2: Illustrative representation of the latent space Z . In the middle, possible transitions (arrows) between covered regions (sketched with
circles) are shown. On the left, details of the covered regions with different shapes and representative points are provided. On the right,
observations from a box stacking tasks are shown. In detail, the ones obtained from covered regions (in pink and blue) contain meaningful
task states, while the ones generated from not covered regions (in red) show fading boxes that do not represent possible states of the system.

to generate visual plans, we additionally assume the existence

of a mapping ω : Z → I called observation generator.

Let TI = {I1, ..., IM} ⊂ I be a finite set of input observa-

tions inducing a set of covered states Tz = {z1, ..., zM} ⊂ Z ,

i.e., Tz = ξ(TI). In order to identify a set of unique covered

states, we make the following assumption on Tz .

Assumption 1: Let z ∈ Tz be a covered state. Then

there exists εz > 0 such that any other state z′ in the

εz−neighborhood Nεz (z) of z can be considered as the same

underlying state.

This allows both generating a valid visual action plan and

taking into account the uncertainty induced by imprecisions

in action execution. Let

Zsys =
⋃

z∈Tz

Nεz (z) ⊂ Z (1)

be the union of εz-neighbourhoods of the covered states z ∈
Tz . Given Zsys, a visual plan can be computed in the latent

space using a latent plan Pz = {zstart = z0, z1, ..., zN =
zgoal}, where zn ∈ Zsys, which is then decoded with the

observation generator ω into a sequence of images.

To obtain a valid visual plan, we study the structure of

the space Zsys which in general is not path-connected, i.e.,

does not contain all the points on linear interpolations between

any two states z1, z2 ∈ Zsys. As we show in Fig. 2 on the

right, such interpolation may result in a path containing points

from Z−Zsys that do not correspond to covered states of the

system and are therefore not guaranteed to be meaningful. To

formalize this, we define an equivalence relation in Zsys

z ∼ z′ ⇐⇒ z and z′ are path-connected in Zsys, (2)

which induces a partition of the space Zsys into m equivalence

classes [z1], . . . , [zm]. Each equivalence class [zi] represents a

path-connected component of Zsys

Zi
sys =

⋃

z∈[zi]

Nεz (z) ⊂ Zsys (3)

called covered region. To connect the covered regions, we

define a set of transitions between them:

Definition 2: A transition function f i,jz : Zi
sys × U → Zj

sys

maps any point z ∈ Zi
sys to an equivalence class representative

zjsys ∈ Zj
sys, where i, j ∈ {1, 2, ...,m} and i ̸= j.

Equivalence relation (2) and Assumption 1 imply that two

distinct observations I1 and I2 which are mapped into the same

covered region Zi
sys contain the same underlying state of the

system, and can be represented by the same equivalence class

representative zisys. Given a set of covered regions Zi
sys in

Zsys and a set of transition functions connecting them we can

approximate the global transitions of Zsys as shown in Fig. 2

on the left. To this end, we define a Latent Space Roadmap

(see Fig. 2 in the middle):

Definition 3: A Latent Space Roadmap is a directed graph

LSR = (VLSR, ELSR) where each vertex vi ∈ VLSR ⊂ Zsys

for i ∈ {1, 2, ...,m} is an equivalence class representative

of the covered region Zi
sys ⊂ Zsys, and an edge ei,j =

(vi, vj) ∈ ELSR represents a transition function f i,jz between

the corresponding covered regions Zi
sys and Zj

sys for i ̸= j.
Moreover, weakly connected components of an LSR are called

graph-connected components.

IV. METHODOLOGY

We first present the structure of the training dataset and then

provide an overview of the approach.

A. Training Dataset

We consider a training dataset TI consisting of generic

tuples of the form (I1, I2, ρ) where I1 ⊂ I is an image of

the start state, I2 ⊂ I an image of the successor state, and

ρ a variable representing the action that took place between

the two observations. Here, an action is considered to be

a single transformation that produces any consecutive state

represented in I2 different from the start state in I1, i.e., ρ
cannot be a composition of several transformations. On the

contrary, we say that no action was performed if images I1
and I2 are observations of the same state, i.e., if ξ(I1) ∼ ξ(I2)
with respect to the equivalence relation (2). The variable

ρ = (a, u) consists of a binary variable a ∈ {0, 1} indicating

whether or not an action occurred as well as a variable u
containing the task-dependent action-specific information. The

latter, if available, is used to infer the transition functions

f i,jz . We call a tuple (I1, I2, ρ = (1, u)) an action pair and

(I1, I2, ρ = (0, u)) a no-action pair. For instance, Fig. 4

shows an example of an action pair (top row) and a no-

action pair (bottom row) for the folding task. In this case,

the action specifics u contain the pick and place coordinates

to achieve the transition from the state captured by I1 to

the state captured by I2, while the no-action pair images
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Fig. 3: Overview of the proposed method. Start and goal images (left) are mapped to the latent space Z by the latent mapping ξ. A latent
plan is then found with the LSR (cyan circles and arrows) and is decoded to a visual plan using the observation generator ω. The APM
(red) proposes actions to achieve the transitions between states in the visual plan. The final result is a visual action plan (green) from start
to goal. A re-planning step can also be added after every action to account for execution uncertainties as in Fig. 12.

are different observations of the same underlying state of

the system represented by slight perturbations of the sleeves.

When the specifics of an action u are not needed, we omit them

from the tuple notation and simply write (I1, I2, a). By abuse

of notation, we sometimes refer to an observation I contained

in any of the training tuples as I ∈ TI . Finally, we denote by

Tz the encoded training dataset TI consisting of latent tuples

(z1, z2, ρ) obtained from the input tuples (I1, I2, ρ) ∈ TI by

encoding the inputs I1 and I2 into the latent space Zsys with

the latent mapping ξ. The obtained states z1, z2 ∈ Zsys are

called covered states.

Remark 1: The dataset TI is not required to contain all

possible action pairs of the system but only a subset of

them that sufficiently cover the dynamics, which makes our

approach data efficient.

Fig. 4: Example of action (a) and no-action (b) pairs in folding task.

B. System Overview

Generation of visual action plans consists of three compo-

nents visualized in Fig. 3:

• Mapping Module (MM) used to both extract a low-

dimensional representation of a state represented by a

given observation, and to generate an exemplary obser-

vation from a given latent state (Sec. V);

• Latent Space Roadmap (LSR) built in the low dimen-

sional latent space and used to plan (Sec. VI);

• Action Proposal Module (APM) used to predict action

specifics for executing a latent plan found by the LSR

(Sec. VII).

The MM consists of the latent mapping ξ : I → Z and

the observation generator ω : Z → I. To find a visual plan

between a given start observation Istart and goal observation

Igoal, the latent mapping ξ first extracts the corresponding

lower-dimensional representations zstart and zgoal of the un-

derlying start and goal states, respectively. Ideally, ξ should

perfectly extract the underlying state of the system such that

different observations containing the same state are mapped

into the same latent point. In practice, however, the unknown

true latent embedding ξ is approximated with a neural network

which implies that different observations containing the same

state could be mapped to different latent points. In order to

perform planning in Z , we thus build the LSR which is a

graph-based structure identifying the latent points belonging

to the same underlying state and approximating the system

dynamics. This enables finding the latent plans Pz between the

extracted states zstart and zgoal. For the sake of interpretabil-

ity, latent plans Pz are decoded into visual plans PI , consisting

of a sequence of images, by the observation generator ω.

We complement the generated visual plan PI with the action

plan Pu produced by the APM, which proposes an action

ui that achieves the desired transition f i,i+1
z (zi, ui) = zi+1

between each pair (zi, zi+1) of consecutive states in the latent

plan Pz found by the LSR.

The visual action plan produced by the three components

can be executed by any suitable framework.

Remark 2: If open loop execution is not sufficient for the

task, as for deformable object manipulation, a re-planning step

can be added after every action. This implies that a new visual

action plan is produced after the execution of each action

until the goal is reached. A visualization of the re-planning

procedure is shown in Fig. 12 on the T-shirt folding task

presented in Sec. X.

Remark 3: Our method is able to generate a sequence of

actions {u0, . . . , uN−1} to reach a goal state in IN from a

given start state represented by I0, even though the tuples in

the input dataset TI only contain single actions u that represent

the weak supervision signals.

V. MAPPING MODULE (MM)

The mappings ξ : I → Z and ω : Z → I as well

as the low-dimensional space Z can be realized using any

encoder-decoder based algorithms, for example VAEs, AEs

or Generative Adversarial Networks (GANs) combined with

an encoder network. The primary goal of MM is to find
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the best possible approximation ξ such that the structure

of the extracted states in the latent space Z resembles the

one corresponding to the unknown underlying system. The

secondary goal of MM is to learn an observation generator ω
which enables visual interpretability of the latent plans. Since

the quality of these depends on the structure of the latent

space Z , we leverage the action information contained in the

binary variable a of the training tuples (I1, I2, a) to improve

the quality of the latent space. We achieve this by introducing

a contrastive loss term [30] which can be easily added to the

loss function of any algorithm used to model the MM.

More precisely, we introduce a general action term

Laction(I1, I2)=

{

max(0, dm − ||z1 − z2||p) if a = 1

||z1 − z2||p if a = 0
(4)

where z1, z2 ⊂ Zsys are the latent encodings of the input

observations I1, I2 ⊂ TI , respectively, dm is a hyperparameter,

and the subscript p ∈ {1, 2,∞} denotes the metric Lp.

The action term Laction naturally imposes the formulation of

the covered regions Zi
sys in the latent space. On one hand,

it encodes identical states contained in the no-action pairs

close by. On the other hand, it encourages different states

to be encoded in separate parts of the latent space via the

hyperparameter dm.

As we experimentally show in Sec. IX-B1, the choice of

dm has a substantial impact on the latent space structure.

Therefore, we propose to learn its value dynamically during

the training of the MM. In particular, dm is increased until the

separation of action and no-action pairs is achieved. Starting

from 0 at the beginning of the training, we increase dm
by ∆dm every kth epoch as long as the maximum distance

between no-action pairs is larger then the minimum distance

between action pairs. The effect of dynamically increasing dm
is shown in Fig. 5 where we visualize the distance ||z1−z2||1
between the latent encodings of every action training pair

(in blue) and no-action training pair (in green) obtained at

various epochs during training on a box stacking task. It can

be clearly seen that the parameter dm is increased as long as

there is an intersection between action and no-action pairs.

Detailed investigation of this approach as well as its positive

effects on the structure of the latent space are provided in

Sec. IX-B1. Note that the dynamic adaptation of the parameter

dm eliminates the need to predetermine its value as in our

previous work [7].

We use a VAE such that its latent space represents the

space Z , while the encoder and decoder networks realize the

mappings ξ and ω, respectively. We validate this choice in

Sec. IX-B3 by comparing it to AE. In the following, we

first provide a brief summary of the VAE framework [5],

[31] and then show how the action term can be integrated

into its training objective. Let I ⊂ TI be an input image,

and let z denote the unobserved latent variable with prior

distribution p(z). The VAE model consists of encoder and

decoder neural networks that are jointly optimized to represent

the parameters of the approximate posterior distribution q(z|I)
and the likelihood function p(I|z), respectively. In particular,

VAE is trained to minimize

Lvae(I)=Ez∼q(z|I)[log p(I|z)] + β ·DKL (q(z|I)||p(z)) (5)

with respect to the parameters of the encoder and decoder

neural networks. The first term influences the quality of the

reconstructed samples, while the second term, called Kullback-

Leibler (KL) divergence term, regulates the structure of the

latent space. The trade-off between better reconstructions or a

more structured latent space is controlled by the parameter β,

where using a β > 1 favors the latter [32], [33]. The action

term (4) can be easily added to the VAE loss (5) as follows:

L(I1, I2) =
1

2
(Lvae(I1)+Lvae(I2))+γ ·Laction(I1, I2) (6)

where I1, I2 ⊂ TI and the parameter γ controls the influence

of the distances among the latent encodings on the latent

space structure. Note that the same procedure applies for

integrating the action term (4) into any other framework that

models the MM.

Fig. 5: An example showing histograms of distances ||z1 − z2||1
for latent action (in blue) and no-action pairs (in green) obtained
at epochs 1, 5 and 50 during the training of VAE on the hard
box stacking task (more details in Sec. IX). The figure shows
the separation of the action and no-action distances induced by
dynamically increasing the minimum distance dm in Laction.

VI. LATENT SPACE ROADMAP (LSR)

The Latent Space Roadmap, defined in Definition 3, is

built in the latent space Z obtained from the MM. LSR is a

graph that enables planning in the latent space which identifies

sets of latent points associated with the same underlying

state and viable transitions between them. Each node in

the roadmap is associated with a covered region Zi
sys. Two

nodes are connected by an edge if there exists an action pair

(I1, I2, ρ = (1, u1)) in the training dataset TI such that the

transition f1,2z (z1, u1) = z2 is achieved in Zsys.

The LSR building procedure is summarized in Algorithm 1

and discussed in Sec. VI-A. It relies on a clustering algorithm

that builds the LSR using the encoded training data Tz and

a specified metric Lp as inputs. The input parameter τ is

inherited from the clustering algorithm and we automatically

determine it using the procedure described in Sec. VI-B.

A. LSR Building

Algorithm 1 consists of three phases. In Phase 1 (lines 1.1−
1.5), we build a reference graph G = (V, E) induced by Tz
and visualized on the left of Fig. 6. Its set of vertices V is the

set of all the latent states in Tz , while edges exist only among
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Algorithm 1 LSR building

Require: Dataset Tz , metric Lp, clustering threshold τ
Phase 1

1: init graph G = (V, E) := ({}, {})

2: for each (z1, z2, a) ∈ Tz do

3: V ← create nodes z1, z2

4: if a = 1 then

5: E ← create edge (z1, z2)

Phase 2
1: M ← Average-Agglomerative-Clustering(Tz, Lp) [6]

2: W ← get-Disjoint–Clusters(M, τ)

3: Zsys ← {}

4: for each Wi ∈ W do

5: εi ← get-Cluster-Epsilon(Wi)

6: Zi
sys := ∪w∈WiNεi(w)

7: Zsys := Zsys ∪ {Z
i
sys}

Phase 3
1: init graph LSR = (VLSR, ELSR) := ({}, {})

2: for each Zi
sys ∈ Zsys do

3: wi := 1

|Wi|

∑
w∈Wi w

4: zisys := argminz∈Zi
sys
||z − wi||p

5: VLSR ← create node zisys
6: for each edge e = (v1, v2) ∈ E do

7: find Zi
sys,Z

j
sys containing v1, v2, respectively

8: ELSR ← create edge (zisys, z
j
sys)

return LSR

the latent action pairs. It serves as a look-up graph to preserve

the edges that later induce the transition functions f i,jz .

In Phase 2, Algorithm 1 identifies the covered regions

Zi
sys ⊂ Zsys. We achieve this by first clustering the training

samples and then retrieving the covered regions from these

clusters. We start by performing agglomerative clustering [6]

on the encoded dataset Tz (line 2.1). Agglomerative clustering

is a hierarchical clustering scheme that starts from single

nodes of the dataset and merges the closest nodes, according

to a dissimilarity measure, step by step until only one node

remains. It results in a stepwise dendrogram M , depicted in

the middle part of Fig. 6, which is a tree structure visualizing

the arrangement of data points in clusters with respect to the

level of dissimilarity between them. We choose to measure

this inter-cluster dissimilarity using the unweighted average

distance between points in each cluster, a method also re-

ferred to as UPGMA [34]. More details about other possible

clustering algorithms and dissimilarity measures are discussed

in Sec. IX-C4. Next, the dissimilarity value τ , referred to as

clustering threshold, induces the set of disjoint clusters W ,

also called flat or partitional clusters [35], from the stepwise

dendrogram M [6] (line 2.2). Points in each cluster Wi are

then assigned a uniform εi (line 2.5), i.e. the neighbourhood

size from Assumption 1 of each point z ∈ Wi is εz = εi.
We discuss the definition of the εi value at the end of this

phase. The union of the εi-neighbourhoods of the points in

Wi then forms the covered region Zi
sys (line 2.6). Illustrative

examples of covered regions obtained from different values of

τ are visualized on the right of Fig. 6 using various colors.

The optimization of τ is discussed in Appendix-B. The result

of this phase is the set of the identified covered regions

Zsys = {Zi
sys} (line 2.7).

We propose to approximate εi as

εi = µi + σi (7)

where µi and σi are the mean and the standard deviation of the

distances ∥zij−z
i
k∥p among all the training pairs (zij , z

i
k) ∈ Tz

belonging to the ith cluster. The approximation in (7) allows to

take into account the cluster density such that denser clusters

get lower εi. In contrast to our previous work [7], we now

enable clusters to have different ε values. We validate the

approximation (7) in Secs. IX-C5 and X-C1 where we analyze

the covered regions identified by the LSR.

In Phase 3, we build the LSR = (VLSR, ELSR). We first

compute the mean value wi of all the points in each cluster

Wi (line 3.3). As the mean itself might not be contained

in the corresponding path-connected component, we find the

equivalence class representative zisys ∈ Zi
sys that is the

closest (line 3.4). The found representative then defines a node

vi ∈ VLSR representing the covered region Zi
sys (line 3.5).

Lastly, we use the set of edges E in the reference graph built

in Phase 1 to infer the transitions f i,jz between the covered

regions identified in Phase 2. We create an edge in LSR if

there exists an edge in E between two vertices in V that

were allocated to different covered regions (lines 3.6 − 3.8).

The right side of Fig. 6 shows the final LSRs, obtained with

different values of the clustering threshold τ .

Note that, as in the case of the VAE (Sec. V), no action-

specific information u is used in Algorithm 1 but solely the

binary variable a indicating the occurrence of an action.

B. Optimization of LSR Clustering Threshold τ

The clustering threshold τ , introduced in Phase 2 of Al-

gorithm 1, heavily influences the number and form of the

resulting clusters. Since there is no inherent way to prefer

one cluster configuration over another, finding its optimal

value is a non-trivial problem and subject to ongoing research

[36], [37], [38]. However, in our case, since the choice of τ
subsequently influences the resulting LSR, we can leverage

the information about the latter to optimize τ . As illustrated

in Fig. 6, the number of vertices and edges in LSRτi changes

with the choice of τi. Moreover, the resulting LSRs can

have different number of graph-connected components. For

example, LSRτ1 in Fig. 6 has 2 graph-connected components,

while LSRτ2 and LSRτ3 have only a single one. Ideally, we

want to obtain a graph that exhibits both good connectivity

which best approximates the true underlying dynamics of

the system, and has a limited number of graph-connected

component. Intuitively, high number of edges increases the

possibility to find latent paths from start to goal state. At

the same time, this possibility is decreased when the graph

is fragmented into several isolated components, which is why

we are also interested in limiting the maximum number of

graph-connected components.

While we cannot analyze the clusters themselves, we can

evaluate information captured by the LSR that correlates with

the performance of the task, i.e., we can assess a graph by the

number of edges and graph-connected components it exhibits
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Fig. 6: Illustrative example visualising the LSR building steps and the effect of the clustering threshold τ . The left shows the reference graph
built in Phase 1 of Algorithm 1. The middle part visualizes a dendrogram M obtained from the clustering algorithm in Phase 2. On the
right, three examples of LSRs are shown together with the covered regions (marked with various colors) corresponding to different clustering
thresholds τ (with τ1 < τ2 < τ3) chosen from M .

as discussed above. This induces an objective which we can

use to optimize the value of the clustering threshold τ . We

formulate it as

ψ(τ, cmax) =

{

|ELSRτ
| if cLSRτ

≤ cmax,

−∞ otherwise,
(8)

where |ELSRτ
| is the cardinality of the set ELSRτ

, cLSRτ

represents the number of graph-connected components of the

graph LSRτ induced by τ , and the hyperparameter cmax

represents the upper bound on the number of graph-connected

components. The optimal τ in a given interval [τmin, τmax] can

be found by any scalar optimization method. In this work, we

use Brent’s optimization method [39] maximizing (8):

max
τmin≤τ≤τmax

ψ(τ, cmax). (9)

This optimization procedure is summarized in Algorithm 2.

It takes as an input the encoded training data Tz , the metric

Lp, the search interval where the clustering parameter τ is to

be optimized, and the upper bound cmax to compute the opti-

mization objective in (8). After initialization of the parameter

τ (line 1), for example, by considering the average value of

its range, the Brent’s optimization loop is performed (lines 2-

5). Firstly, the LSR with the current τ is built according to

Algorithm 1 (line 3). Secondly, the optimization objective (8)

is computed on the obtained LSRτ (line 4). Thirdly, the

parameter τ as well as the bounds τmin and τmax are updated

according to [39] (line 5). The optimization loop is performed

until the convergence is reached, i.e., until |τmax − τmin| is

small enough according to [39]. Lastly, the optimal τ∗ (line

6) is selected for the final LSRτ∗ .

Note that even though Algorithm 2 still needs the selection

of the hyperparameter cmax, we show in Sec. IX-C3 that it is

rather robust to the choice of this parameter.

C. Visual plan generation

Given a start and goal observation, a trained VAE model and

an LSR, the observations are first encoded by ξ into the VAE’s

latent space Z where their closest nodes in the LSR are found.

Next, all shortest paths in the LSR between the identified nodes

are retrieved. Finally, the equivalence class representatives of

the nodes comprising each of the found shortest path compose

the respective latent plan Pz , which is then decoded into the

visual plan PI using ω.

Algorithm 2 LSR input optimization

Require: Dataset Tz , metric Lp, search interval [τmin, τmax], cmax

1: τ ← init(τmin, τmax)

2: while |τmax − τmin| not small enough do

3: LSRτ ← LSR-building(Tz, Lp, τ) [Algorithm 1]

4: ψ ← Evaluate(LSRτ ) [Eq. (8)]

5: τ, τmin, τmax ← Brent-update(ψ) [39]

6: τ∗ ← τ

return LSRτ∗

VII. ACTION PROPOSAL MODULE (APM)

The final component of our framework is the Action Pro-

posal Module (APM) which is used to complement a latent

plan, produced by the LSR, with an action plan that can be

executed by a suitable framework. The APM allows to gener-

ate the action plans from the extracted low-dimensional state

representations rather than high-dimensional observations. The

action plan Pu corresponding to a latent plan Pz produced

by the LSR is generated sequentially: given two distinct

consecutive latent states (zi, zi+1) from Pz , APM predicts an

action ui that achieves the transition f i,i+1(zi, ui) = zi+1.

Such functionality can be realized by any method that is

suitable to model the action specifics of the task at hand.

We model the action specifics with a neural network called

Action Proposal Network (APN). We deploy a multi layer

perceptron and train it in a supervised fashion on the latent

action pairs obtained from the enlarged dataset Tz as described

below. We validate this choice in Sec X-D where we compare

it to different alternatives that produce action plans either by

exploiting the LSR or by using the observations as inputs

rather than extracted low-dimensional states.

The training dataset Tz for the APN is derived from TI
but preprocessed with the VAE encoder representing the latent

mapping ξ. We encode each training action pair (I1, I2, ρ =
(1, u)) ∈ TI into Z and obtain the parameters µi, σi of the

approximate posterior distributions q(z|Ii) = N(µi, σi), for

i = 1, 2. We then sample 2S novel points zs1 ∼ q(z|I1) and

zs2 ∼ q(z|I2) for s ∈ {0, 1, . . . , S}. This results in S+1 tuples

(µ1, µ2, ρ) and (zs1, z
s
2, ρ), 0 ≤ s ≤ S, where ρ = (1, u) was

omitted from the notation for simplicity. The set of all such

low-dimensional tuples forms the APN training dataset Tz .

Remark 4: It is worth remarking the two-fold benefit of this
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preprocessing step: not only does it reduce the dimensionality

of the APN training data but also enables enlarging it with

novel points by factor S +1. Note that the latter procedure is

not possible with non-probabilistic realizations of ξ.

VIII. ASSUMPTIONS, APPLICABILITY AND LIMITATIONS

OF THE METHOD

In this section, we briefly overview our assumptions, de-

scribe tasks where our method is applicable, and discuss its

limitations. In order for our method to successfully perform a

given visual action planning task, the observations contained

in the training dataset TI should induce the covered states

(defined in Sec. III) that are considered in the planning.

Furthermore, it is required that sufficiently many transitions

among them are observed such that the obtained LSR ade-

quately approximates the true underlying system dynamics.

For example, the training datasets TI in the box stacking tasks

consist of 2500 pairs of states of the system instead of all

(i.e., 41616) possible combinations. On the other hand, if the

system contains many feasible states, it can be challenging

to collect a dataset TI that covers sufficiently many states and

transitions between them. Even though the performance of the

LSR would deteriorate with such incomplete dataset, we do

not consider this as the limitation of the method itself as this

can be mitigated with online learning approaches, e.g., [40],

that dynamically adapt the LSR based on the interaction with

the environment.

Given the assumptions on the format of the dataset TI
introduced in Sec. IV-A, our method is best applicable to visual

action planning tasks where feasible states of the system are

finite and can be distinguished in TI such that meaningful

unambiguous actions to transition among them can be defined.

Therefore, our approach does not generalize well to entirely

novel states of the system not contained in the training set. This

is expected, as the model has no prior knowledge about the

newly appeared state, such as, for example, an entirely new

fold of a T-shirt or a new piece of garment. Such generalization

could be achieved by integrating active learning approaches

which is indeed an interesting future direction. We emphasise

that the proposed method is not limited by the dimensionality

of the system’s states since that is reduced via MM.

IX. SIMULATION RESULTS

We experimentally evaluated our method on three different

simulated tasks: two versions of a box stacking task (Fig. 7

left) and a combined rope and box manipulation task (Fig. 7

right), which we refer to as rope-box manipulation task. We

considered the initial box stacking task used in our previous

work [7] (top left), and a modified one where we made the

task of retrieving the underlying state of the system harder.

We achieved this by i) using more similar box textures which

made it more difficult to separate the states, and ii) by intro-

ducing different lighting conditions which made observations

containing the same states look more dissimilar. We refer to the

original setup as the normal stacking task denoted by ns, and

to the modified one as the hard stacking task denoted by hs.
In the rope-box manipulation task (Fig. 7 right), denoted by

rb, a rope connects two boxes constraining their movement.

To challenge the visual action planning, we again introduced

different lighting conditions as well as the deformability of

the rope.

These three setups enable automatic evaluation of the struc-

ture of the latent space Zsys, the quality of visual plans PI

generated by the LSR and MM, and the quality of action

plans Pu predicted by the APN. Moreover, they enable to

perform a more thorough ablation studies on the introduced

improvements of our framework which were not possible in

our earlier version of the LSR [7] since the resulting visual

action plans achieved a perfect evaluation score.

All setups were developed with the Unity engine [41] and

the resulting images have dimension 256 × 256 × 3. In the

stacking tasks, four boxes with different textures that can be

stacked in a 3×3 grid (dotted lines in Fig. 7). A grid cell can

be occupied by only one box at a time which can be moved

according to the stacking rules: i) it can be picked only if

there is no other box on top of it, and ii) it can be released

only on the ground or on top of another box inside the 3× 3
grid. In both versions of the stacking task, the position of each

box in a grid cell was generated by introducing ∼ 17% noise

along x and y axes which was applied when generating both

action and no-action pairs. The action-specific information u,

shown in Fig. 7 left, is a pair u = (p, r) of pick p and

release r coordinates in the grid modelled by the row and

column indices, i.e., p = (pr, pc) with pr, pc ∈ {0, 1, 2}, and

equivalently for r = (rr, rc).
In the rope-box manipulation task, two boxes and a rope

can be moved in a 3 × 3 grid with 4 pillars according to the

following manipulation rules: i) a box can only be pushed

one cell in the four cardinal directions but not outside the

grid, ii) the rope can be lifted over the closest pillar, iii) the

rope cannot be stretched over more that two cells, meaning

the boxes can never be more than one move apart from being

adjacent. In this task, the action-specific information u, shown

in Fig. 7 right, denotes whether the rope is moved over the

closest pillar (top) or a box is moved in the grid (bottom) with

respective pick p and release r coordinates.

Fig. 7: Examples of actions u in the normal (top) and hard (bottom)
box stacking tasks (left) and in the rope-box task (right). The blue
circle shows the picking location p, and the green one the release
position r. The action ‘rope’ for moving the rope over the closest
pillar is shown in top right.



10

According to the above rules, the training datasets TI for

stacking tasks contain all possible 288 different grid configura-

tions, i.e., the specification of which box, if any, is contained

in each cell. In case of the rope-box manipulation task, TI
contains 157 different grid configurations comprising the po-

sition of the rope and boxes. These 288/157 grid configurations

represent the covered states in these tasks. Note that the exact

number of underlying states is in general not known. Given a

pair of states and the task rules, it is possible to analytically

determine whether or not an action is allowed between them.

In addition, we can determine the grid configuration associated

with an image (i.e., its underlying state) contained in the

produced visual plan PI using classifiers. These were trained

on the decoded images and achieved accuracy greater than

98.8% on a holdout dataset composed of 750 samples for both

versions of the stacking task and the rope-box task. All the

implementation details can be found on our code repository2.

A. Experiment Objectives and Implementation Details

Our experiments are designed to answer the following

questions:

1) MM What is the impact of the action term (4) in the

augmented loss function (6) on the structure of the latent

space? How do the respective parameters (e.g., minimum

distance) influence the overall LSR performance? Lastly,

how does the VAE framework perform compared to the

AE one for modelling the mappings ξ and ω in the MM?

2) LSR What is the performance of the LSR compared to

state of the art solutions like [8] and [9], and what is the

influence of the action term (4) on it? How do the respec-

tive LSR parameters (e.g., number of components) and

the choice of the clustering algorithm impact the overall

LSR performance? How good is the LSR approximation

of the covered regions?

3) APM What is the performance of the APN model?

In this section, we present the implementation details and

introduce the notation used to easily refer to the models

in consideration. For VAEs (used in MM), each model is

annotated by VAEld -task-d where ld denotes the dimension

of the latent space, task denotes the version of the task and

is either ns, hs or rb for the normal stacking task, hard

stacking tasks or rope-box manipulation task, respectively. The

parameter d indicates whether or not the model was trained

with the action loss term (4). We use d = b to denote a

baseline VAE trained with the original VAE objective (5),

and d = L1 to denote an action VAE trained with the loss

function (6) including the action term (4) using metric L1.

Compared to [7], we consider only L1 metric in our simulated

experiments due to its superior performance over the L2 and

L∞ metrics established in [7].

All VAE models used a ResNet architecture [42] for the

encoder and decoder networks. They were trained for 500
epochs on a training dataset TI , composed of 65% action pairs

and 35% no-action pairs for stacking tasks, and 50% action

pairs and 50% no-action pairs for rope-box manipulation task.

2 https://github.com/visual-action-planning/lsr-v2-code

For each combination of parameters ld, task, and d, we trained

5 VAEs initialized with different random seeds. Same seeds

were also used to create training and validations splits of the

training dataset. The weight β in (5) and (6) was gradually

increased from 0 to 2 over 400 epochs, while γ was fixed

to 100. In this way, models were encouraged to first learn to

reconstruct the input images and then to gradually structure

the latent space. The minimum distance dm was dynamically

increased every fifth epoch starting from 0 using ∆dm = 0.1
as described in Sec. V. The effect of this dynamic parameter

increase is shown in Fig. 5.

For LSR, we denote by LSR -L1 a graph built using the

metric L1 in Algorithm 1. The parameters τmin and τmax in the

LSR optimization (9) were set to 0 and 3, respectively. Unless

otherwise specified, we fixed ld = 12 for all tasks. Moreover,

the number of graph-components cmax in the optimization of

the clustering threshold (8) was set to 1 for ns, and 20 for hs
and rb. These choices are explained in detail in the following

sections. Given an LSR, we evaluated its performance by

measuring the quality of the visual plans found between 1000
randomly selected start and goal observations from an unseen

holdout set containing 2500 images. To automatically check

the validity of the found paths, we used the classifiers on

the observations contained in the visual plans to get the

respective underlying states. We then defined a checking

function (available on the code repository) that, given the

states in the paths, determines whether they are allowed or

not according to the the stacking or the manipulation rules. In

the evaluation of the planning performance we considered the

following quantities: i) percentage of cases when all shortest

paths from start to goal observations are correct, denoted as %

All, ii) percentage of cases when at least one of the proposed

paths is correct, denoted as % Any, and iii) percentage of

correct single transitions in the paths, denoted as % Trans. We

refer to the % Any score in ii) as partial scoring, and to the

combination of scores i)-iii) as full scoring. Mean and standard

deviation values are reported over the 5 different random seeds

used to train the VAEs.

For APNs, we use the notation APNld -task-d analogous

to the VAEs. The APN models were trained for 500 epochs

on the training dataset Tz obtained following the procedure

described in Sec VII using S = 1. Similarly as for LSR, we

report the mean and standard deviation of the performance

obtained over the 5 random seeds used in the VAE training.

B. MM Analysis

In this section, we validate the MM module answering the

questions in point 1) of Sec. IX-A. In the first experiment,

we investigated the influence of the dynamic parameter dm
on the LSR performance. We then studied the structure of

the latent space by analyzing the distance between encodings

of different states. Lastly, we compared the LSR performance

when modelling MM with an AE framework instead of a VAE.

1) Influence of dynamic dm: A key parameter in the

action term (4) is the minimum distance dm encouraged among

the action pairs. We considered the hard stacking and rope-

box manipulation tasks and validated the approach proposed
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Fig. 8: Comparison of LSR performance using the dynamic dm (solid
lines) and static dm (cross markers with dashed lines) for the hard
stacking (blue) and rope-box manipulation (orange) tasks. Non linear
x-axis scale showing the values of dm is used for better visualization.

in Sec. V, which dynamically increases dm to separate action

and no-action pairs (see Fig. 5). At the end of the training,

the approach results in dm = 2.3 ± 0.1 and dm = 2.6 ± 0.2
for the hard stacking and rope-box tasks, respectively.

Figure 8 shows the performance of the LSR using partial

scoring on the hard stacking task (blue) and rope-box ma-

nipulation task (orange) obtained for the dynamic dm (solid

lines), and a selected number of static dm parameters (cross

markers with dashed lines) ranging from low (dm = 0) to

high (dm = 100) values. Among the latter, we included

the static dm = 11.6 and dm = 6.3 obtained using our

previous approach in [7] on the stacking and the rope-box

tasks, respectively. We observed that: i) the choice of dm
heavily influences the LSR performance, where same values

of dm can lead to different behavior depending on the task

(e.g., dm = 11.6), ii) the dynamic dm leads to nearly optimal

performance regardless of the task compared to the grid

searched static dm. Note that even though there are static dm
values where the performance is higher than in the dynamic

case (e.g., dm = 3 with 93.1% for stacking and dm = 9 with

91.2% for the rope-box task), finding these values a priori

without access to ground truth labels is hardly possible.

This approach not only eliminates the need for training the

baseline VAEs as in [7] but also reaches a value of dm that

obtains a better separation of covered regions Zi
sys without

compromising the optimization of the reconstruction and KL

terms. In fact, as discussed in Sec. V, the reconstruction,

KL and action terms in the loss function (5) have distinct

influences on the latent space structure which can be in

contrast to each other. The proposed dynamic increase of

dm results in a lower dm value than in [7], which in turn

yields small distances between the action pair states while

still being more beneficial than a simple static dm = 0. Such

small distances in the action term are desirable as they do not

contradict the KL term. This can explain why the LSRs with

higher values of dm reach worse performance compared to the

dynamic one. On the other hand, the quality of the obtained

visual plans demonstrates that the resulting dm neither affects

the reconstruction capabilities of the MM.

2) Separation of the states: We investigated the effect

of the action loss (4) on the structure of the latent space

by analyzing the separation of the latent points z ∈ Tz

corresponding to different underlying states of the system. For

simplicity, we report only results for the normal stacking task

but we observed the same conclusions for the hard stacking

and the rope-box manipulation tasks. Recall that images in

TI containing the same state looked different because of

the introduced positioning noise in the stacking tasks (and

different lightning conditions in the case of hs as well as the

deformability of the rope in rb).
Let z̄s be the centroid for state s defined as the mean point

of the training latent samples {zs,i}i ⊂ Tz associated with the

state s. Let dintra(zs,i, z̄s) be the intra-state distance defined

as the distance between the latent sample i associated with the

state s, namely zs,i, and the respective centroid z̄s. Similarly,

let dinter(z̄s, z̄p) denote the inter-state distance between the

centroids z̄s and z̄p of states s and p, respectively.

Figure 9 reports the mean values (bold points) and the

standard deviations (thin lines) of the inter- (in blue) and

intra-state (in orange) distances for each state s ∈ {1, ..., 288}
in the normal stacking task when using the baseline model

VAE12 -ns-b (top) and the action model VAE12 -ns-L1 (bot-

tom). In case of the baseline VAE, we observed similar intra-

state and inter-state distances. This implies that samples of

different states were encoded close together in the latent space

which can raise ambiguities when planning. On the contrary,

when using VAE12 -ns-L1, we observed that the inter- and

intra-state distances approach the values 5 and 0, respectively.

These values were imposed with the action term (4) as the

minimum distance dm reached 2.6. Therefore, even when there

existed no direct link between two samples of different states,

and thus the action term for the pair was never activated, the

VAE was able to encode them such that the desired distances in

the latent space were respected. Similar conclusions also hold

Fig. 9: Mean values (bold points) and standard deviations (thin lines)
of inter- (blue) and intra- (orange) state distances for each state
calculated using the baseline VAE (top) and the action VAE12 -ns-L1

model (bottom) on normal stacking task.

for the hard stacking and the rope-box manipulation tasks,

whose plots are omitted for the interest of space.

Finally, we analyzed the difference between the minimum

inter-state distance and the maximum intra-state distance for

each state. The higher the value the better separation of states

in the latent space since samples of the same state are in this

case closer to each other than samples of different states. When

the latent states were obtained using the baseline VAE12 -ns-b,
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we observed a non-negative distance for 0/288 states with

an average value of ≈ −1.2. This implies that only weak

separation occurred in the latent space for samples of different

states. On the other hand, when calculated on points encoded

with VAE12 -ns-L1, the difference became non-negative for

284/288 states and its mean value increased to ≈ 0.55,

thus achieving almost perfect separation. In the hard stacking

task, we similarly found that VAE12 -hs-b reached an average

difference of −5.86 (being non-negative for 0/288 states),

while the action model VAE12 -hs-L1 reduced the average

difference to −0.04 (being non-negative for 121/288 states).

This result demonstrates the difference in the difficulty be-

tween the two versions of the box stacking task and highlights

the challenges of visual action planning on the harder stacking

task where worse separation of states was achieved. For the

rope-box manipulation task we obtained, coherently with the

box stacking results, an average difference of −2.95 (being

non-negative for 37/157 states) with the baseline model, which

improved to 0.15 with the action model VAE12 -rb-L1 (being

non-negative for 100/157 states).

In Appendix-A, we performed an ablation study on the

latent space dimension, justifying the choice ld = 12 in our

simulations.

We conclude that the action term (4) and the dynamic dm
contribute to a better structured latent space Zsys.

3) VAE compared to AE: VAE framework is only one

of the possible models for the MM. We justify this modeling

choice by comparing it to the AE framework. Similarly as

VAE, an AE model consists of an encoder and a decoder

network which are jointly trained to minimize the the Mean

Squared Error (MSE) between the original input and its

decoded output. In contrast to VAEs, the two networks in AEs

do not model a probability distribution. Since the KL diver-

gence in VAE acts as a regularization term, we employed the

stable weight-decay Adam optimizer from [43] with default

parameters to make the comparison more fair. We denote the

model by AE-b. Analogously to VAE, the original AE loss was

augmented with the action loss (4) weighted by the parameter

γ, which we denote by AE-L1. Note that L1 refers only to

the metric in (4) and not in the MSE calculation.

We modelled the AE encoder and decoder networks using

the same ResNet [42] architecture as in case of VAEs. We set

ld = 12, γ = 1000 and increased the minimum distance dm
dynamically every fifth epoch starting from 0 using ∆dm = 1,

as described in Sec. V. The LSR was built using the same

τmin = 0 and τmax = 3 (Algorithm 2).

Table II shows the LSR performance using partial scoring

on all simulated tasks when MM was modelled as an AE

(top two rows) and as a VAE (bottom row). Not only we

observed a superior performance of VAE compared to the AE

but once again the effectiveness of the action term (4) on all

the tasks as it increased the average AE performance from

0.1% to 36.3% for ns, from 0.1% to 33.6% for hs, and 0.1%
to 9.8% for rb. This comparison shows that the probabilistic

modeling adopted by VAEs resulted in a latent space that is

more adequate for visual action planning with respect to the

considered AEs. As future work, we aim to investigate the

benefits of more advanced models, such as Vector Quantised-

VAE [44], which are out of the scope of this work.

Model ns [%] hs [%] rb [%]

AE-b+LSR-L1 0.1± 0.0 0.0± 0.0 0.1± 0.1
AE-L1+LSR-L1 36.3± 26.9 33.6± 10.3 9.8± 5.4

VAE-L1+LSR-L1 100.0 ± 0 92.1 ± 2.9 90.4 ± 2.9

Table II: Comparison of the LSR performance using partial scoring
when modelling MM with an AE (top two rows) and a VAE (bottom
row) framework on all the simulated tasks. Best results in bold.

C. LSR Analysis

In this section, we analyze the LSR performance by an-

swering the questions stated in point 2) of Sec. IX-A. Firstly,

we compared the LSR performance to the method in [8] and

one inspired by [9]. Secondly, we investigated the influence

of the action term (4) on the LSR performance. Thirdly, we

investigated the influence of the upper bound on the number of

connected components cmax used in (8). Next, we performed

an extensive comparison of the LSR algorithm using different

clustering algorithms in Phase 2 of Algorithm 1. Finally, we

analyzed the covered regions determined by the LSR.

1) LSR comparison: We compared the performance of

the LSR on all simulated tasks with two benchmark methods

introduced below. In all the experiments, we considered the

baseline models VAE12-b and the action VAE12-L1 trained

with the action term (4). We compared our method with

Semi-Parametric Topological Memory (SPTM) framework [8]

discussed in Sec. II and an MPC-based approach inspired

by [9].

In SPTM, we connected action pairs (treated as one-step

trajectories) and no-action pairs (considered temporarily

close) in the latent memory graph. As in [8], we added

Nsc more shortcut edges connecting the encodings that are

considered closest by the retrieval network to the memory

graph. In the localization step, we used the median of

k = 5 nearest neighbours of the nodes in the memory

graph as recommended in [8]. To select the waypoint, we

performed a grid search over sreach ∈ {0.75, 0.9, 0.95} and

chose sreach = 0.95. We also performed a grid search over

Nsc ∈ {0, 2 · 102, 1 · 104, 1 · 105, 1 · 106, 1.5 · 106, 2 · 106} and

used the values Nsc = 1.0 · 106, 1.5 · 106, 2.0 · 106 for ns,
hs and rb, respectively. We used high number of shortcuts

compared to Nsc = 2 · 102 in [8] because we only had

access to one-step trajectories instead of full roll-outs.

Using low number of shortcuts resulted in a memory graph

consisting of large amount of disconnected components

which impeded planning. For example, in hard stacking task

using Nsc = 2 · 102 yielded a graph with 2243 connected

components which led to almost zero correct transitions over

the 1000 test paths. A higher number of shortcuts instead

improved the connectivity of the graph and thus its planning

capabilities.

The MPC-inspired baseline is composed of a learned tran-

sition model ft(·) and a learned action validation model fa(·),
both taking the current latent state z1 and the applied action

u as inputs. The transition model then predicts the next state

z2 = ft(z1, u), while the validation model fa(z1, u) predicts

whether the given action u was allowed or not.
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These models are used in a MPC-style approach, where

first a search tree is constructed for a given start state z1 by

iterating over all allowed action using fa(z1, u) with u ∈ U
and predicting the consecutive states with the transition model

ft(·). The search is performed at each time step and until the

search tree has reached a specified horizon N . Lastly, the path

in the built tree leading to the state closest to the goal using

L1 distance is selected and the first action in the sequence is

applied. This procedure is repeated until all proposed actions

lead further from the goal. In our case, the resulting state

and action sequence is decoded into a visual action plan and

evaluated in the same way as the LSR.

We implemented ft and fa as a three layer MLP-regressor

and MLP-classifier, respectively, with 100 hidden units. For a

fair comparison, we trained ft and fa using training encodings

Tz from the same MM that was used for building the LSR.

As Tz only includes allowed actions, we augmented the

training data for fa(·) with an equal amount of negative

examples by randomly sampling u ∈ U . We used horizon

N = 4. The trained ft models achieved R2 coefficient of

determination [45] of 0.96, 0.96, and 0.88 (highest 1) for

the normal, hard stacking and rope-box datasets, respectively.

The fa(·) model was evaluated on 1000 novel states and by

applying all possible actions on each state. It achieved an

accuracy score of 88.5±1.8, 97.3±0.2, and 87.4±0.8 for the

normal, hard stacking and rope-box datasets, respectively. Note

that the normal and hard stacking tasks has exactly 48 unique

actions with ≈ 9.4% of them being allowed on average. The

rope-box task on the other hand has 25 unique actions with

an average of ≈ 17.1% being allowed per state.

Table III shows the result of our method (VAE-L1 + LSR-

L1), the SPTM framework and the MPC-based approach

(VAE-L1 + MPC) evaluated on the full scoring on the normal

box stacking (top), hard box stacking (middle), and rope-box

manipulation task (bottom). We observed that the proposed

approach (VAE-L1 + LSR-L1) significantly outperformed the

considered benchmark methods. This can be explained by the

fact that SPTM- and MPC-based methods are more suited for

tasks where the provided data consists of rolled out trajectories

in which small state changes are recorded in consecutive states,

which is also a potential shortcoming of [26].

In contrast, as discussed in Sec. VIII, our method is best

applicable when actions lead to distinguishable different obser-

vations. This allows to consider only pairs of observations as

input dataset instead of requiring entire trajectories. Moreover,

a core difference between our approach and SPTM is that

we do not assume that each observation maps into a unique

underlying state, but rather, as described in Sec. IV, we struc-

ture and cluster observations in such a way that observations

associated with the same underlying state are grouped together.

We reiterate that this approach is best suited for tasks with

finite and distinguishable states, which differ from continuous

RL setting used by SPTM.

2) Influence of the action term: We investigated how

the LSR performance is affected by the action term (4) by

comparing it to the variant where MM was trained without it

(VAE-b + LSR-L1). The results on the full scoring for all the

tasks are shown in Table III. We observed deteriorated LSR

performance when using baselines VAE12-b compared to the

action VAEs regardless the task. This indicates that VAEs-b
were not able to separate states in Zsys. We again conclude

that the action term (4) needs to be included in the VAE loss

function (6) in order to obtain distinct covered regions Zi
sys.

In addition, the results underpin the different level of difficulty

of the tasks as indicated by the drop in the LSR performance

on hs and rb compared to ns using the action VAE-L1.

In summary, this simulation campaign demonstrates the

effectiveness of the LSR on all the considered simulated tasks

involving both rigid and deformable objects compared to

existing solutions, as well as supports the integration of the

action term in the VAE loss function.

Task Model % All % Any % Trans.

ns

VAE-L1 + MPC 2.3± 0.3 2.3± 0.3 69.3± 1.0
SPTM [8] 0.2± 0.1 0.5± 0.3 51.9± 1.4

VAE-b+ LSR-L1 2.5± 0.5 4.1± 1.0 59.7± 4.9
VAE-L1+ LSR-L1 100.0 ± 0 100.0 ± 0 100.0 ± 0

hs

VAE-L1 + MPC 2.1± 0.4 2.1± 0.4 76.8± 0.3
SPTM [8] 0.0± 0.0 0.0± 0.0 23.6± 0.7

VAE-b+ LSR-L1 0.2± 0.1 0.2± 0.1 38.0± 2.0
VAE-L1+ LSR-L1 90.9 ± 3.5 92.1 ± 2.9 95.8 ± 1.3

rb

VAE-L1 + MPC 6.2± 0.5 6.2± 0.5 73.8± 0.8
SPTM [8] 0.0± 0.0 0.4± 0.3 25.2± 9.7

VAE-b+ LSR-L1 0.2± 0.1 0.2± 0.1 0.2± 0.1
VAE-L1+ LSR-L1 89.7 ± 3.7 90.4 ± 2.9 96.2 ± 1.5

Table III: Planning performance using full scoring for the normal
(top) and hard (middle) box stacking tasks and rope-box manipulation
task (bottom) using MPC and SPTM [8] methods, baseline VAE-b
and action VAE-L1. Best results in bold.

3) Influence of the maximum number of connected

components: The optimization method described in Sec. VI-B

requires setting an upper bound on the number of graph-

connected components cmax of the LSR. Table IV shows

how different choices of upper bounds influence the LSR

performance on all simulated tasks.

cmax ns [%] hs [%] rb [%]

1 100.0 ± 0.0 65.3± 24.6 4.5± 5.6
5 99.5± 0.4 88.6± 5.4 55.8± 28.8
10 99.0± 0.3 91.5± 3.8 80.4± 10.6
20 97.5± 0.5 92.1 ± 2.9 90.4 ± 2.9

50 91.3± 1.1 88.2± 2.0 89.4± 1.9
100 80.0± 1.4 77.9± 2.1 76.0± 2.8

Table IV: LSR performance on all simulated tasks for different cmax

values. Best results in bold.

We observed that the results are rather robust with respect

to the cmax value. For all tasks, the performance dropped for

a very high cmax, such as cmax = 100, while in the hard

stacking task and especially in the rope-box manipulation task,

we additionally observed a drop for a very low cmax, such as

cmax = 1. This behavior can be explained by the fact that the

lower the cmax the more the system is sensitive to outliers,

while the higher the cmax the greater the possibility that

the graph is disconnected which potentially compromises its

planning capabilities. For example, in the hard stacking task,

outliers arise from different lightning conditions, while in the

rope-box manipulation task they arise from the deformability
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of the rope. In contrast, no outliers exist in the normal stacking

task which is why a single connected component is sufficient

for the LSR to perform perfectly. For all further evaluation,

we set cmax = 1 for ns and cmax = 20 for hs and rb.

This result demonstrates the robustness of the approach with

respect to cmax as well as justifies the choices of the cmax

values in the rest of simulations.

4) Comparing different clustering methods for Phase 2:

We showcase the effect of the outer optimization loop de-

scribed in Algorithm 2 on several different clustering methods

used in Phase 2 in Algorithm 1 on the hard stacking task. We

considered Epsilon clustering used in our earlier work [7],

Mean-shift [46], OPTICS [47], Linkage (single, complete and

average) [48] and HDBSCAN [49] algorithms. We provide a

summary of the considered algorithms in Appendix-B. The

performance of the considered clustering methods (except for

HDBSCAN) depends on a single input scalar parameter that

is hard to tune. However, as described in Sec. VI-B, we are

able to optimize it by maximizing the objective in (8).

Table V reports the LSR performance with different cluster-

ing algorithms when performing grid search to determine their

input scalar parameters (left) and when using our automatic

optimization (right). Partial scoring using VAE12 -hs-L1 is

shown. Note that the grid search was only possible in this

problem setting as the ground truth can be retrieved from the

trained classifiers but it is not generally applicable. Firstly,

the results show that average-linkage, used for our LSR

in Sec. VI-A, together with our automatic input parameter

optimization outperformed the other alternatives. The results

of the grid search show that the automatic criteria for iden-

tifying different cluster densities, adopted by OPTICS and

HBDSCAN, did not effectively retrieve the underlying covered

regions. Meanshift performed better but its approximation

of spherical clusters did not lead to the optimal solution.

Similar performance to Meanshift was obtained with single-

and complete-linkage algorithms showing that the respective

distance functions are not either suited for identifying covered

regions. The same applies for the epsilon clustering.

Concerning the optimization results, they highlight the

effectiveness of the optimization procedure in Algorithm 2

as they are comparable to the ones obtained with the grid

search for all clustering methods. Note that grid search led

to a slightly lower performance than the optimization for

meanshift, complete-linkage and average-linkage. In these

cases, the grid was not fine enough which points out the

difficulty of tuning the respective parameters.

This investigation demonstrates the effectiveness of our pro-

posed optimization loop and shows that the average-linkage

clustering algorithm led to the best LSR performance among

considered alternatives for the hard box stacking task.

5) Covered regions using LSR: To show that the LSR cap-

tures the structure of the system, we checked if observations

corresponding to true underlying states of the system, that

have not been seen during training, are properly recognized as

covered. Then, we checked if observations from the datasets of

the remaining simulated tasks as well as from the 3D Shapes

dataset [50] are marked as uncovered since they correspond

Clust. method Grid Search [%] Optimization [%]

Epsilon [7] 83.5± 4.8 65.8± 12.2
Meanshift 78.2± 3.3 80.2± 5.9
OPTICS 44.3± 8.7 40.8± 6.1
HDBSCAN 16.1± 5.7 -

Single-linkage 79.3± 8.8 65.8± 12.2
Complete-linkage 79.1± 6.4 81.4± 4.8
Average-linkage 91.1± 2.5 92.1 ± 2.9

Table V: Comparison of the LSR performance for different clustering
algorithms for the hard box stacking task. Partial scoring is reported
when applying grid search (left column) and when using the opti-
mization in Algorithm 2 (right column). Best results in bold.

to out-of-distribution observations. The covered regions Zi
sys

were computed using the epsilon approximation in (7).

Table VI reports the results of the classification of covered

states obtained by the models trained on normal (first row) and

hard (second row) box stacking tasks and rope-box manipula-

tion task (third row). Holdout datasets for each simulated task

were used. For the normal stacking task, results show that

the LSR almost perfectly recognized all the covered states

(ns column) with the average recognition equal to 99.5%,

while it properly recognized on average 4694/5000 samples

(93.9% - hs column) hard version. An almost perfect average

recognition was also obtained on the rope-box manipulation

task (99.6% - rb column). For out-of-distribution observations,

the lower the percentage the better the classification. Table VI

shows that the models trained on ns (first row, columns

hs, rb, 3D Shapes) and hs (second row, columns ns, rb,
3D Shapes) were able to perfectly identify all non-covered

states, while worse performance was observed for the rope-box

models which misclassified ≈ 10% of the uncovered datasets

(third row, columns ns, hs, 3D Shapes). This decrease in

performance could be explained by the fact that capturing the

state of a deformable object is much more challenging than

rigid objects.

We conclude that LSR provides a good approximation of

the global structure of the system as it correctly classified

most of the observations representing possible system states as

covered, and out-of-distribution observations as not covered.

ns [%] hs [%] rb [%] 3D Sh. [%]

ns 99.47± 0.27 0.0± 0.0 0.0± 0.0 0.0± 0.0
hs 0.0± 0.0 93.71± 0.61 0.0± 0.0 0.0± 0.0
rb 9.48± 7.45 13.5± 8.57 99.6± 0.1 9.72± 8.38

Table VI: Classification of covered states for the normal (first row)
and hard (second row) box stacking models and rope-box models
(third row) when using as inputs novel images from the tasks (ns,
hs and rb columns) and the 3D Shapes (3D Sh. column) datasets.

D. APM Analysis

We evaluated the accuracy of action predictions obtained by

APN-L1 on an unseen holdout set consisting of 1611, 1590
and 948 action pairs for the normal stacking, hard stacking and

rope-box manipulation tasks, respectively. As the predicted

actions can be binary classified as either true or false, we

calculated the percentage of the correct proposals for picking
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and releasing, as well as the percentage of pairs where both

pick and release proposals were correct. For rope-box task, we

additionally calculated the percentage of the correct proposal

for either rope or box action. We evaluated all the models

on 5 different random seeds. For both stacking versions, all

the models performed with accuracy 99% or higher, while

rope-box models achieved ≈ 96%. This is because the box

stacking task results in an 18-class classification problem for

action prediction which is simple enough to be learned from

any of the VAEs, while the classification task in the rope-box is

slightly more challenging due to the required extra prediction

whether to move a rope or a box.

X. FOLDING EXPERIMENTS

In this section, we validate the proposed approach on a

real world experiment involving manipulation of deformable

objects, namely folding a T-shirt. As opposed to the simulated

tasks, the true underlying states were in this case unknown and

it was therefore not possible to define an automatic verification

of the correctness of a given visual action plan.

The folding task setup is depicted in Fig. 12 (middle).

We used a Baxter robot equipped with a Primesense RGB-

D camera mounted on its torso to fold a T-shirt in different

ways. The execution videos of all the performed experiments

and respective visual action plans can be found on the project

website. A summary of the experiments can also be found in

the accompanying video. For this task, we collected a dataset

TI containing 1283 training tuples. Each tuple consists of two

images of size 256× 256× 3, and action specific information

u defined as u = (p, r, h) where p = (pr, pc) are the picking

coordinates, r = (rr, rc) the releasing coordinates and h
picking height. An example of an action and a no-action pair

is shown in Fig. 4. The values pr, pc, rr, rc ∈ {0, . . . , 255}
correspond to image coordinates, while h ∈ {0, 1} is either

the height of the table or a value measured from the RGB-

D camera to pick up only the top layer of the shirt. Note

that the separation of stacked clothing layers is a challenging

task and active research area on its own [51] and leads to

decreased performance when it is necessary to perform it, as

shown in Sec. X-E2. The dataset TI was collected by providing

task demonstrations by human operators, i.e., by manually

selecting pick and release points on images showing a given T-

shirt configuration, and recording the corresponding action and

following configuration. No-action pairs, representing ≈ 37%
of training tuples in TI , were generated by slightly perturbing

the cloth appearance.

A. Experiment Objectives and Implementation Details

The experiments on the real robot were designed to answer

the following questions:

1) MM Does the action loss term (4) improve the structure

of the latent space for the folding task?

2) LSR How good is the approximation of the covered

regions provided by the LSR for a real world dataset?

3) APM How does the APN perform in comparison to

alternative implementations of the APM?

4) System How does the real system perform and how

does it compare to our earlier work [7]? What is the

performance on a folding that involves picking the top

layer of the shirt?

Following the notations introduced in Sec. IX-A, we denote

by VAEld -f -d a VAE with ld-dimensional latent space, where

f stands for the folding task and d indicates whether or not

the model was trained with the action loss (4). We use d = b
for the baseline VAEs which were trained with the original

training objective (5). We use d = Lp for the action VAEs

trained with the objective (6) containing the action term (4)

using metric Lp for p ∈ {1, 2,∞}. We modelled VAEs with

the same ResNet architecture and same hyperparameters β, γ
and dm as in the box stacking task introduced in Sec. IX but

increased the latent space dimension to ld = 16. We refer the

reader to the code repository2 for implementation details.

For the LSR, we denote by LSR -Lp a graph obtained by

using metric Lp in Algorithm 1. We set the upper bound cmax

in (8) to 5, and the search interval boundaries τmin and τmax

in Algorithm 2 to 0 and 3.5, respectively.

The performance of the APMs and the evaluation of the

system was based on the VAE16 -f -L1 realization of the MM.

We therefore performed the experiments using APN16 -f -L1

which was trained on latent action pairs Tz extracted by the

latent mapping ξ of VAE16 -f -L1. We trained 5 models for

500 epochs using different random seeds as in case of VAEs,

and used 15% of the training dataset as a validation split to

extract the best performing model for the evaluation.

We compared the performance of our system S-OUR con-

sisting of VAE16 -f -L1, LSR -L1 and APN16 -f -L1 with the

systems S-L1, S-L2 and S-L∞ introduced in [7], using metrics

L1, L2 and L∞, respectively, on the same folding tasks. The

major novelties of S-OUR with respect to the systems in [7]

are reported in Sec. I. The start configuration was the fully

unfolded shirt shown in Fig. 10 on the left, while the 5
goal configurations are shown on the right. The latter are of

increasing complexity requiring a minimum of 2, 2, 3, 3, and

4 folding steps for folds 1-5, respectively.

Fig. 10: Start state (right) followed by 5 different goal configurations
for the folding task [7]. The lower right configuration requires to pick
a layer on top of the T-shirt.

Each fold was repeated 5 times and scored in the same

way as in [7]. In particular, we scored the system performance

where a folding was considered successful if the system was

able to fold the T-shirt into the desired goal configuration.
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As the state space of the T-shirt is high-dimensional, there

exists no objective measure that would evaluate the success

of the fold automatically. Therefore, the evaluation of the full

folding procedure was manually done by a human (one of the

authors) but all execution videos of all folds and repetitions can

be found on the project website. We additionally evaluated the

percentage of successful transitions of the system. A transition

was considered successful if the respective folding step was

executed correctly. Lastly, we evaluated the quality of the

generated visual plans PI and the generated action plans Pu.

We considered a visual (action) plan successful if all the

intermediate states (actions) were correct. Even for a correctly

generated visual action plan, the open loop execution is not

robust enough for a real robot system. We therefore added

a re-planning step after each action completion as shown in

Fig. 12. This accounts, as instance, for potential execution

uncertainties, inaccuracies in grasping or in the positioning

phases of pick-and-place operations which led to observations

different from the ones planned in PI . Note that after each

action execution, the current observation of the cloth was

considered as a new start observation, and a new visual action

plan was produced until the goal observation is reached or

the task is terminated. Such re-planning setup was used for

all folding experiments. As the goal configuration does not

allude to how the sleeves should be folded, the LSR suggests

multiple latent plans. A subset of the corresponding visual

action plans is shown on the left of Fig. 12. If multiple plans

were generated, a human operator selected one to execute.

After the first execution, the ambiguity arising from the sleeve

folding was removed and the re-planning generated a single

plan, shown in the right.

To deal with the sparse nature of the collected dataset, if no

path was found from the start to the goal node, the planning

was repeated using the closest nodes to the current start and/or

goal nodes in the latent space. This procedure was repeated

until a path was found.

B. MM Analysis

We answered question 1) by evaluating the separation of

action and no-action pairs during the training.

1) Influence of dynamic dm: We investigated the influ-

ence of the dynamic increase of dm in the action term (4)

on the structure of the latent space. Figure 11 shows the

histogram of action (in blue) and no-action (in green) pair

distances calculated at different epochs during training using

VAE16 -f -b (top row) and VAE16 -f -L1 (bottom row). The

figure shows that the separation was complete in case of

action VAEs but was not achieved with the baseline VAEs.

To precisely quantify the amount of overlap between action

and no-action pairs, we calculated the difference between

the minimum action-pair distance and maximum no-action

pair distance on the training dataset, that is reported in the

following. A positive difference value implies that action

pairs were successfully separated from the no-action pairs.

For VAE16 -f -b (top row), the difference evaluated to −31.8,

−19.2, and −19.4 for epoch 1, 100, and 500, respectively,

while it was improved to −6.3, −1.6, and 1.5 in case of

the action VAE16 -f -L1 (bottom row). This shows that the

dynamic selection of dm successfully separated the actions

and no-action pairs also for the folding task.

Fig. 11: Histograms of action (in blue) and no-action (in green) pair
distances at different training epochs (1, 100 and 500 from the left,
respectively) for the folding task. Results obtained with baseline (top,
a)) and action (bottom, b)) models are shown.

C. LSR Analysis

Similarly to the simulated tasks, we exploited the LSR

to investigate the covered regions of the latent space Z ,

thus answering question 2) listed in Sec. X-A. Note that in

Sec. X-E, the LSR was also employed to perform the folding

task with the real robotic system.

1) Covered regions using LSR: We used VAE16 -f -L1

model and reproduced the experiment from Sec. IX-C5, where

we measured the accuracy of various novel observations being

recognized as covered. We inputted 224 novel observations

that correspond to possible states of the system not used

during training, as well as 5000 out-of-distribution samples

from each of the three datasets of the simulated tasks and

the standard 3D Shapes dataset. We observed that the LSR

achieved good recognition performance even in the folding

task. More precisely, on average 213/224 samples representing

true states of the system were correctly recognized as covered,

resulting in 95± 2.4% accuracy averaged over the 5 different

random seeds. For the four out-of-distribution datasets, all

samples were correctly recognized as not covered.

This analysis illustrates the effectiveness of the LSR in

capturing the covered regions of the latent space.

D. APM Comparison

In this section we validate the choice of the APM by

comparing it to several possible alternatives.

The Action Proposal Network, described in Sec. VII, was

built upon the one introduced in [7] to which we added dropout

regularization layers. The APN receives as inputs latent action

pairs contained in a latent plan found by the LSR, and outputs

the predicted action specifics. We refer to the earlier version

in [7] as e-APN and to the current version APN16 -f -L1 as

APN. We compared the performance of APN to e-APN as well

as several alternatives introduced below.

Action Averaging Baseline (AAB) Firstly, we investigated

whether the action predictions can be retrieved directly from
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Method X Pick Y Pick X Release Y Release Height Total

e-APN [7] 144.1± 52.2 52.8± 18.3 317.2± 143.3 159.9± 17.4 0.0 ± 0.0 674.0± 147.6
C-APN 498.0± 63.8 47.4± 7.7 818.8± 121.9 226.5± 92.5 0.0 ± 0.0 1590.8± 155.0
R-APN 697.2± 345.1 246.2± 174.9 792.4± 388.8 268.9± 157.0 0.0 ± 0.0 2004.6± 908.2
AAB 113.0 22.4 201.4 194.7 0.0 531.5

APN (Ours) 82.6 ± 22.9 29.3± 2.2 270.6± 158.2 71.8 ± 15.0 0.0 ± 0.0 454.3 ± 153.8

Table VII: Comparison of MSE achieved with different realizations of the Action Proposal Modules. Best results in bold.

Fig. 12: Execution of the folding task with re-planning. On the left, a set of initial visual action plans reaching the goal state is proposed.
After the first execution, only one viable visual action plan remains.

the LSR instead of a separate module. The basic idea is to use

the latent action pairs in the training dataset to calculate the

average action specifics associated with each edge in the LSR.

Let E ij
sys = {(z1, z2) ∈ E|z1 ∈ Zi

sys, z2 ∈ Zj
sys} be the set of

edges from the reference graph E connecting covered regions

Zi
sys and Zj

sys (Algorithm 1). We parameterized each edge

eijLSR = (ziLSR, z
j
LSR) ∈ ELSR with the action uijLSR obtained

by averaging actions corresponding to the edges in E ij
sys

uijLSR =
1

|E ij
sys|

∑

(z1,z2)∈Eij
sys

uz1z2 (10)

where uz1z2 is the action specification associated with the

action pair (z1, z2) in the training dataset Tz . The parametriza-

tion (10) yields the action plan associated with a path Pz .

Secondly, we investigated how the use of the latent encod-

ings as inputs to the APM influences the LSR performance.

We compared APN-d with two distinct versions of APMs that

use images as inputs.

C-APN is a neural network that uses a convolutional encoder

followed by the APN. The encoder in C-APN was trained

using only MSE loss. During the inference, the observations

given to C-APN as input are obtained by decoding the latent

plan found by the LSR with the observation generator ω.

R-APN is an extension of C-APN that uses a ResNet encoder

identical to the VAE encoder.

Detailed architectures of all the models can be found in

our code repository. The training details for APN and APN-d

are described in Sec. X-A. For C-APN-d and R-APN-d, we

similarly trained 5 models using different random seeds but

on a training dataset TI obtained by decoding Tz with the

observation generator ω of VAE16 -f -L1. This is because the

visual plans, given to C-APN-d and R-APN-d, are produced by

decoding the latent plans with ω. Moreover, C-APN-d and R-

APN-d were trained for 1000 epochs to ensure the convergence

of the initialized encoders. Note that we can only obtain one

AAB model for a chosen VAE as AAB is defined by the LSR.

We evaluated the performance of all the models on a holdout

dataset consisting of 41 action pairs. Given a holdout action

pair, we calculated the mean squared error (MSE) between the

predicted and the ground truth action specifics. We report the

mean and standard deviation of the obtained MSE calculated

across the 5 random seeds (except for AAB). The results

are shown in Table VII where we separately report the error

obtained on picking and releasing as well as the total model

error. Firstly, we observed that the added regularization layer

positively affected the result as APN achieved lower error than

our earlier version e-APN [7]. Secondly, APN significantly

outperformed both C-APN and R-APN. Using the latent

encodings as inputs also significantly decreased the size of

the models and reduces the computational power needed for

their training. Lastly, our APN also on average outperformed

AAB with respect to the total model error. Although the

enhancement compared to the AAB was not as significant

as for the other models, APN is beneficial since it is less

prone to averaging errors obtained from the LSR and can be

easily adapted to any realization of action specifics. Moreover,

a neural network realization of the APM potentially allows

more accurate modeling of more complex action specifics. In

summary, using a separate neural network to predict action

specifics from latent representations led to a lower prediction

error and can be easily adapted to different types of actions.

E. System Analysis

We benchmarked our method against our earlier method

in [7] on the same T-shirt folding task, and additionally mea-

sured the performance on a more challenging fold involving

picking a layer of the cloth on top of another layer.

1) Folding performance and comparison with [7]: We

performed each fold 5 times per configuration using the unseen

goal observations shown in Fig. 10 and framework S-OUR,

consisting of VAE16 -f -L1, LSR -L1 and APN16 -f -L1, and

compared the performance with the results from our earlier

work [7] obtained using S-L1, S-L2 and S-L∞.
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Method Syst. Trans. PI Pu
Fold 1 to 5 - comparison to [7]

S-OUR 96% 99% 100% 100%

S-L1 [7] 80% 90% 100% 100%
S-L2 [7] 40% 77% 60% 60%
S-L∞ [7] 24% 44% 56% 36%

Fold layer

S-OUR 50% 83% 100% 100%

Table VIII: Results (best in bold) for executing visual action plans on
5 folding tasks (each repeated 5 times) shown in the top. The bottom
row shows the results on the fold requiring to pick the top layer of
the garment (repeated 10 times).

The results are shown in Table VIII, while, as previously

mentioned, all execution videos, including the respective vi-

sual action plans, are available on the website1. We report

the total system success rate with re-planning, the percentage

of correct single transitions, and the percentage of successful

visual plans and action plans from start to goal. We observed

that S-OUR outperformed the systems from [7] with a notable

96% system performance, only missing a single folding step

which results in a transition performance of 99%. As for S-

L1, S-OUR also achieved optimal performance when scoring

the initial visual plans PI and the initial action plans Pu. We

thus conclude that the improved MM, LSR and APM modules

together contribute to a significant better system than in [7].

2) Folding with multiple layers: As the previous folds

resulted in nearly perfect performance of our system, we

challenged it with an additional much harder fold that requires

to pick the top layer of the garment. The fold, shown in

Fig. 10 bottom right, was repeated 10 times. An example of

the obtained visual action plan is shown in Fig. 13 and the

final results are reported in Table VIII (bottom row).

Fig. 13: Visual action plan for the fold requiring to pick the top
layer of the garment. The step where the top layer is to be picked is
indicated in purple (see accompanying video for further details).

Experiments showed that the system had no trouble plan-

ning the folding steps from the initial configuration and was

able to properly plan layer folds (with pick location marked

in purple). Concerning the execution of the plan, the robot

managed to correctly fold in 80% of the cases, excluding

the last fold, using the re-planning strategy. However, failure

cases often occurred during the execution of the last layer

fold, resulting in the robot picking up multiple layers at the

same time. When this happened, the T-shirt deformed into

unseen states that were very dissimilar from the ones in TI and

that rendered the re-planning step inefficient. A more precise

manipulation system, either using a specialized gripper or

custom methods for separating cloth layers, could potentially

boost the performance of our system on this specific folding

task. We leave these improvements for future work.

XI. CONCLUSIONS

In this work, we presented an extended version of the Latent

Space Roadmap first introduced in [7] which allows visual

action planning of manipulation tasks. Firstly, we improved

the building procedure of the LSR in the latent space by

introducing an outer optimization loop that eliminates the

need for a hard-to-tune clustering parameter. Secondly, we

improved the training procedure of the VAE, used to represent

the Mapping Module, by dynamically increasing the desired

distance between action pairs. We thoroughly investigated the

structure of the latent space, and presented a deep insight

into the effects that each of the improvements have for the

system. In addition, we compared different realizations of the

Action Proposal Module and showcased the benefits of using

latent representations for generating action plans. Lastly, we

evaluated the LSR on three simulated tasks as well as real-

world folding task. We introduced a harder version of the box

stacking task and a rope-box manipulation task involving a

rigid and deformable object, which enabled a more informative

ablation study. We showed that the improved LSR significantly

outperforms the one presented in [7] on the same folding task.

We are convinced that in order to advance state-of-the-art

manipulation techniques for rigid and deformable objects, im-

provements on two fronts are necessary: learning a structured

latent space as well as its exploration. We believe that our

proposed method is a step toward achieving this goal which

also opens many interesting future directions. For example, we

wish to expand our method to encode full trajectories to further

structure the latent space, or to apply it to reinforcement

learning settings with active exploration.

APPENDIX

A. Latent space dimension

The problem of choosing a suitable latent space dimension

has not received much attention in the literature. In Table IX

we report the partial scoring on normal and hard stacking

and rope-box tasks using VAE models with various latent

dimensions. The results demonstrate an evident drop in the

performance when the latent dimension was too small, such as

ld = 4. As ld increased, we observed gradual improvements in

the performance where a satisfactory level was achieved using

ld ≥ 6 for ns, and ld ≥ 12 for hs and rb. Therefore, hs and rb
required more dimensions in order to capture all the relevant

and necessary features. This result not only demonstrates the

complexity of each task version but also justifies the choice

ld = 12 in the simulations.

ld ns [%] hs [%] rb [%]

4 7.9± 2.2 8.8± 7.9 62.7± 13.9
6 99.96± 0.08 56.2± 23.1 74.9± 5.0
8 99.96± 0.08 62.7± 18.7 80.6± 5.3
12 100.0± 0.0 92.1± 2.9 90.4± 2.9
16 100.0± 0.0 95.9± 1.4 92.2± 1.1
32 97.5± 4.33 96.4± 0.4 92.6± 2.0

Table IX: Comparison of the LSR performance when using VAEs
with different latent dimensions for all the simulated tasks.
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B. Overview of clustering algorithms

In this section, we provide a brief overview of the ablated

clustering methods considered in Sec. IX-C4.

Epsilon clustering: used in our earlier work [7] and function-

ally coincident with DBSCAN [52]. Its performance is affected

by the parameter ε, i.e., radius of the ε-neighborhood of every

point, and deteriorates when clusters have different densities.

Mean-shift: centroid-based algorithm [46] with moving win-

dow approach to identify high density regions. At each iter-

ation, the centroid candidates associated to the windows are

updated to the mean of the points in the considered region. The

window size has a significant influence on the performance.

OPTICS: improved version of DBSCAN introduced by [47]

in which a hierarchical reachability-plot dendrogram is built,

whose slope identifies clusters with different densities. The

parameter Ξ ∈ [0, 1] is used to tune the slope and heavily

affects the outcome of the algorithm. However, its influence

is not easy to understand intuitively, as discussed in [53].

Linkage: hierarchical, agglomerative clustering algorithm dis-

cussed in Sec. VI-A. Possible dissimilarity functions to merge

points are single, based on the minimum distance between

any pair of points belonging to two distinct clusters, complete,

based on the maximum distance, and average, based on the

unweighted average of the distances of all points belonging to

two distinct clusters.

As discussed in Sec. VI-A, the clustering threshold τ
determines the vertical cut through the dendrogram and con-

sequently influences the performance of the algorithm.

HDBSCAN: agglomerative clustering algorithm in which the

branches of the dendrogram are optimized for non-overlapping

clusters using a notion of “cluster stability” based on their

longevity. HDBSCAN automatically identifies clusters with

different densities and requires specifying only the minimum

cluster size prior to the training.
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