
Latent Space Roadmap for Visual Action Planning of Deformable and Rigid
Object Manipulation

Martina Lippi*1,2, Petra Poklukar*1, Michael C. Welle*1, Anastasiia Varava1,
Hang Yin1, Alessandro Marino3, and Danica Kragic1

Abstract— We present a framework for visual action planning
of complex manipulation tasks with high-dimensional state
spaces such as manipulation of deformable object. Planning is
performed in a low-dimensional latent state space that embeds
images. We define and implement a Latent Space Roadmap
(LSR) which is a graph-based structure that globally captures
the latent system dynamics. Our framework consists of two
main components: a Visual Foresight Module (VFM) that
generates a visual plan as a sequence of images, and an Action
Proposal Network (APN) that predicts the actions between
them. We show the effectiveness of the method on a simulated
box stacking task as well as a T-shirt folding task performed
with a real robot.

I. INTRODUCTION AND RELATED WORK

Designing efficient state representations for task and mo-
tion planning is a fundamental problem in robotics studied
for several decades [1], [2]. Traditional planning approaches
rely on a comprehensive knowledge of the state of the robot
and the surrounding environment. As an example, informa-
tion about the robot hand and mobile base configurations
as well as possible grasps is exploited in [3] to accomplish
sequential manipulation tasks. The space of all possible
distributions over the robot state space, called belief space, is
instead employed in [4] to tackle partially observable control
problems.

The two most important challenges in designing state
representations for robotics are high dimensionality and
complex dynamics of the state space. Sampling-based plan-
ning algorithms [5] mitigate the first problem to a certain
extent by randomly sampling the state space and hence
avoiding representing it explicitly. However, when dealing
with higher-dimensional spaces and more complex systems,
such as highly deformable objects, these approaches become
intractable [6]. Moreover, analytical modeling of the states
of these systems and simulation of their dynamics in real
time remains an open research problem [7].

For this reason, data-driven low-dimensional latent space
representations for planning are receiving increasing atten-
tion as they make it possible to consider states that would
otherwise be intractable. In particular, deep neural networks
allow to implicitly represent complex state spaces and their
dynamics thus enabling an automatic extraction of lower-
dimensional state representations [8]. Unlike simpler meth-
ods, such as Principal Component Analysis (PCA) [9], deep

*These authors contributed equally (listed in alphabetical order).
1KTH Royal Institute of Technology Stockholm, Sweden
2University of Salerno, Salerno, Italy
3University of Cassino and Southern Lazio, Cassino, Italy

Fig. 1: Overview of the proposed method. The Visual Foresight
Module (blue) takes the start and goal images and produces a visual
plan from a latent plan found with the Latent Space Roadmap
(cyan). The Action Proposal Network (red) proposes suitable ac-
tions to achieve the transitions between states in the visual plan.
The final result is a visual action plan (green) from start to goal
containing actions to transition between consecutive states.

neural networks also capture non-linear relations between
features. Some of the most common approaches to learning
compact representations in an unsupervised fashion are latent
variable models such as Variational Autoencoders (VAEs)
[10], [11] or encoder-decoder based Generative Adversarial
Networks (GANs) [12], [13]. These models can learn low-
dimensional state representations directly from images in-
stead of a separate perception module. In this way, images
can be used as input for planning algorithms to generate
“visual plans” [14], [15].

Latent state representations, however, are not guaranteed
to capture the global structure and dynamics of the system,
i.e. to encode all the possible system states and respective
feasible transitions. Furthermore, not all points in the latent
space necessarily correspond to physically valid states of the
system, which makes it hard to plan by naively interpolating
between start and goal states as shown in Fig. 5. In addition,
the transitions between the generated states might not be
valid.

One way to address these shortcomings is to restrict the
exploration of the latent space via imitation learning as
presented in [16], where a latent space Universal Planning
Network (UPN) embeds differentiable planning policies and
the process is learned in an end-to-end fashion. The authors
then perform gradient descent to find optimal trajectories.

A more common solution to mitigate the challenges of
planning in latent spaces is to collect a large amount of
training data that densely covers the state space and allows to
infer dynamically valid transitions between states. Following
this approach, the authors in [14] propose a framework for

global search in the latent space based on three components:
i) a latent state representation, ii) a network that approxi-
mates the latent space dynamics, and iii) a collision checking
network. Motion planning is then performed directly in the
latent space by an RRT-based algorithm. Similarly, a Deep
Planning Network is proposed in [17] to perform continuous
control tasks where a transition model, an observation model
and a reward model in the latent space are learned and then
exploited to maximize an expected reward function. Follow-
ing the trend of self-supervised learning, the manipulation
of a deformable rope from an initial start state to a desired
goal state is investigated in [18]. Building upon [15], 500
hours worth of data collection are used to learn the rope’s
inverse dynamics and then produce an understandable visual
foresight plan for the intermediate steps to deform the rope
using a Context Conditional Causal InfoGAN (C3IGAN).

In this paper, we address the aforementioned challenges re-
lated to latent space representations by constructing a global
roadmap in the latent space. Our Latent Space Roadmap
(LSR) is a graph-based structure built in the latent space
that both captures the global structure of the state space
and avoids sampling invalid states. Our approach is data-
efficient as we do not assume that the training dataset densely
covers the state space neither accurately represents system
dynamics. We instead consider a dataset consisting of pairs
of images and demonstrated actions connecting them, and
then learn feasible transitions between states from this partial
data. This allows avoiding full imitation for modeling as in
the UPN framework [16] as well as tackling tasks involving
highly-deformable objects such as cloths.

More specifically, our method takes as input tuples consist-
ing of an initial image, a successor image and properties of
the action that occurred between the states depicted in them.
For example, in a box stacking task an action corresponds to
moving one box, while in a T-shirt folding task it corresponds
to making a fold (more details in Sec. VI). We deploy a
VAE which we train with an augmented loss function that
exploits the action information to enforce a more favourable
structure of the latent space. A similar augmentation was
explored in [19] but, in contrast to our work, uses an auto-
encoder framework and requires class labels which are not
needed for LSR. Our method, visualised in Fig. 1, identifies
the feasible transitions between regions containing similar
states and generates a valid visual action plan by sampling
new valid states inside these regions. Our contributions can
be summarized as follows:

1) We define the Latent Space Roadmap that enables
generating a valid visual action plan. While we use
the VAE framework, our method can be applied to any
other latent variable model with an encoder-decoder
structure;

2) We augment the VAE loss function to encourage
different states to be encoded further apart in the latent
space and similar states to be encoded close by;

3) We experimentally evaluate our method on a simulated
box stacking task as well as a real-world T-shirt folding
task and quantitatively compare different metrics in the

loss augmentation (L1, L2, and L∞). Complete details
can be found on the website1.

II. PROBLEM STATEMENT AND NOTATION

The goal of visual action planning, also referred to as
“visual planning and acting” in [18], can be formulated
as follows: given start and goal images, generate a path
as a sequence of images representing intermediate states
and compute dynamically valid actions between them. The
problem is formalized in the following.

Let I be the state space of the system represented as
images with fixed resolution and let Isys ⊂ I be the subset
representing all the states of the system that are possible to
reach while performing the task. A possible state I ∈ Isys
is called a valid state. Let U be the set of possible control
inputs or actions.

Definition 1: A visual action plan consist of a visual
plan represented as a sequence of images PI = {Istart =
I0, I1..., IN = Igoal} where Istart and Igoal are images rep-
resenting the start and the goal states, and an action plan rep-
resented as a sequence of actions Pu = {u0, u1, ..., uN−1}
where un ∈ U generates a transition between consecutive
states In and In+1 for each n ∈ {0, ..., N − 1}.

To reduce the complexity of the problem we consider a
lower-dimensional latent space Z encoding I, and Zsys ⊂ Z
encoding Isys. Each image In ∈ Isys can be encoded as a
point zn ∈ Zsys. Using Zsys, a visual plan can be computed
in the latent space as Pz = {zstart = z0, z1, ..., zN = zgoal}
where zn ∈ Zsys, and then decoded as a sequence of images.

In order to obtain a valid visual plan, we study the
structure of the space Zsys which in general is not path-
connected. As we show in Sec. VI-A.2 and Fig. 5, linear
interpolation between two valid states z1 and z2 in Zsys
may result in a path containing points from Z − Zsys that
do not represent valid states of the system. To ensure a valid
Pz , we therefore make an ε-validity assumption:

Assumption 1: Let z ∈ Zsys be a valid latent state. Then
there exists ε > 0 such that any other latent state z′ in the
ε−neighborhood Nε(z) of z is a valid latent state.

This assumption, motivated by the continuity of the en-
coding of I into Z , allows both taking into account the
uncertainty induced by imprecisions in action execution and
generating a valid visual plan. Each valid latent state z in the
visual plan can therefore be substituted by any other state z′

in the ε−neighborhood of z. To formalize this, we define an
equivalence relation in Zsys

z ∼ z′ ⇐⇒ ||z − z′||d < ε, (1)

where the subscript d ∈ {1, 2,∞} denotes the metrics L1, L2

and L∞, respectively, and ε a task-dependent parameter.
Consider a finite set of valid latent states

Rz = {z1, ..., zM} ⊂ Zsys induced by the set of valid
input images RI = {I1, ..., IM} ⊂ Isys. By Assumption 1
the union Rεz of ε−neighborhoods of the points in Rz

1https://visual-action-planning.github.io/lsr/

https://visual-action-planning.github.io/lsr/

consists of valid points:

Rεz =

M⋃
i=1

Nε(zi) ⊂ Zsys. (2)

Assume thatRεz consists of m path-connected components
called valid regions and denoted by {Zisys}mi=1. In general,
if the points from Rz are sufficiently far away from each
other, m is larger than 1. Note that each valid region is an
equivalence class with respect to the equivalence relation (1).
To connect them, we define a set of transitions between them:

Definition 2: A transition function f i,jz : Zisys × U →
Zjsys maps any point z ∈ Zisys to a class representative
zjsys ∈ Zjsys, where i, j ∈ {1, 2, ...,m} and i 6= j.

Given a set of valid regions Rεz in Zsys and a set of
transition functions connecting them we can approximate the
global transitions of Zsys as shown in Fig. 2. To this end,
we define a Latent Space Roadmap:

Fig. 2: A visualisation of the structure of the latent state space
showing valid regions Zi

sys and transition functions f j,i
z between

them.

Definition 3: A Latent Space Roadmap is a directed graph
LSR = (VLSR, ELSR) where each vertex vi ∈ VLSR ⊂
Zsys for i ∈ {1, 2, ...,m} is an equivalence class repre-
sentative of the valid region Zisys ⊂ Zsys, and an edge
ei,j = (vi, vj) ∈ ELSR represents a transition function f i,jz
between the corresponding valid regions Zisys and Zjsys for
i 6= j.

III. AN OVERVIEW OF OUR APPROACH

A. Training Dataset
We consider a training dataset TI consisting of generic

tuples of the form (I1, I2, ρ) where I1 ⊂ Isys is an image
of the start state, I2 ⊂ Isys an image of the successor
state, and ρ a variable representing the action that took place
between the two states. Here, an action is considered to
be a single transformation that produces any consecutive
state I2 different from the start state I1, i.e., ρ cannot be
a composition of several transformations. On the contrary,
we say that no action was performed if states I1 and I2
are variations of the same state, i.e., if the state I2 can be
obtained from I1 with a small perturbation. The variable
ρ = (a, u) consists of a binary variable a ∈ {0, 1} indicating
whether or not an action occurred as well as a variable
u containing the task-dependent action-specific information
which can be used to infer the transition functions f i,jz . For
instance, an action in the box stacking example is illustrated
in Fig. 3 where u contains pick and place coordinates. If no
action occurred, the right-hand side configuration in Fig. 3
would equal the one on the left-hand side with some small

perturbations in the box positions. We call a tuple (I1, I2, ρ =
(1, u)) an action pair and (I1, I2, ρ = (0, u)) a no-action
pair. When the specifics of the action u are not relevant,
we omit them from the tuple notation and simply write
(I1, I2, a). Finally, we denote by Tz the encoded training
dataset TI consisting of latent tuples (z1, z2, ρ) obtained from
the input tuples (I1, I2, ρ) ∈ TI by encoding the inputs I1
and I2 in the latent space Zsys.

B. System Overview
Our method consists of two main components depicted in

Fig. 1. The first is the Visual Foresight Module (VFM) which
is a trained VAE endowed with a Latent Space Roadmap
(LSR). Given a start and goal state, the VFM produces a
visual plan PI consisting of a sequence of images. The
sequence PI is a decoded latent plan Pz found in the VAE’s
latent space using the LSR.

The second component is the Action Proposal Network
(APN) which takes a pair (zi, zi+1) of consecutive latent
states from the latent plan Pz produced by the VFM and
proposes an action ui to achieve the desired transition
f i,i+1
z (zi, ui) = zi+1.

The two components combined produce a visual action
plan that can be executed by any suitable framework. If open
loop execution is not sufficient for the task, a re-planning step
can be added after every action by substituting the start state
with the current state and generating a new visual plan with
corresponding action plan.

Remark 1: Note that, although the tuples in the input
dataset TI contain only single actions u, our method is able
to generate a sequence of actions {u0, . . . , uN−1} to reach
a goal state IN from a given start state I0.

IV. VISUAL FORESIGHT MODULE (VFM)
The Visual Foresight Module in Fig. 1 has two building

blocks that are trained in a sequential manner. Firstly, we
train a VAE with an additional term in the loss function
that affects the structure of the latent space. Once the VAE
is trained, we build our LSR in its latent space Z which
identifies the valid regions Zisys. We present the details
below.

1) Latent state space: Let I ⊂ Isys be an input image,
and let z denote the unobserved latent variable and p(z)
the prior distribution. The VAE model [10], [11] consists
of encoder and decoder neural networks that are jointly
optimised to represent the parameters of the approximate
posterior distribution q(z|I) and the likelihood function
p(I|z), respectively. In particular, the VAE is trained to
minimize

Lvae(I)=Ez∼q(z|I)[log p(I|z)] + β ·DKL (q(z|I)||p(z))
(3)

with respect to the parameters of the encoder and decoder
neural networks. The first term influences the quality of the
reconstructed samples, while the second term, called the KL
divergence term, regulates the structure of the latent space.
A better optimised KL term, achieved for example with a
β > 1 [20], [21], results in a more compact latent space with

points distributed according to the prior p(z) but produces
more blurry reconstructions. Therefore, the model needs to
find a balance between the two opposing terms.

Since our training data consists of tuples (I1, I2, a), we
compute Lvae for I1 and I2 separately and leverage the
information contained in the binary variable a by minimizing
an additional action term

Laction(I1, I2)=

{
max(0, dm − ||z1 − z2||d) if a = 1

||z1 − z2||d if a = 0
(4)

where z1, z2 ⊂ Zsys are the latent encodings of the input
states I1, I2 ⊂ Isys, respectively, and the subscript d denotes
the metric as in (1). The hyperparameter dm introduced
among the action pairs enforces different states to be encoded
in separate parts of the latent space. The action term Laction
naturally encourages the formulation of the valid regions
Zisys in the latent space while maintaining the capability
to generalise, i.e. to sample novel valid states, inside each
region Zisys.

The complete VAE loss term then equals

L(I1, I2) =
1

2
(Lvae(I1)+Lvae(I2))+γ ·Laction(I1, I2) (5)

where the parameter γ controls the influence of the distances
among the latent codes on the structure of the latent space.

A. Latent Space Roadmap (LSR)
The Latent Space Roadmap is defined in Definition 3 and

built following the procedure summarised in Algorithm 1.
It is based on the idea that each node in the roadmap is
associated with a valid region Zisys. Two nodes are connected
by an edge if there exists an action pair (I1, I2, ρ) in the
training dataset TI such that the transition f1,2z (z1, u1) = z2
is achieved in Zsys.

More specifically, the algorithm takes as an input the
encoded training data Tz , the parameter ε defined in As-
sumption 1 inducing the size of the valid regions Zisys, and
the metric d with respect to which we measure if a valid
latent state is in the ε−neighbourhood of another valid state.
Note that, as in the case of the VAE (Sec. IV-.1), no action-
specific information u is used but solely the binary variable
a indicating the occurrence of an action.

Algorithm 1 consists of three phases. In Phase 1, we build
a reference graph G = (V, E) induced by Tz (lines 1.1−1.5).
Its vertices are all the latent states in Tz and edges exists only
among the latent action pairs. It serves as a look-up graph to
keep track of which areas in Zsys have already been explored
as well as to preserve the edges that later induce the transition
functions f i,jz .

In Phase 2, we identify the valid regions Zisys ⊂ Zsys. We
start by randomly selecting a vertex from V and finding all
the vertices from V that are in its ε−neighbourhood (lines
2.5 − 2.8). The set Wi

sys of all the points found in this
way necessarily belongs to the same connected component
by Assumption 1. However, we need to keep repeating this
search for all the identified points (line 2.7) as there might
be more latent states in their respective ε−neighbourhoods.
OnceWi

sys stops growing, the union of all ε-neighbourhoods

Algorithm 1 LSR building
Require: Dataset Tz , neighborhood size ε, metric d

Phase 1
1: init graph G = (V, E) := ({}, {})
2: for each (z1, z2, a) ∈ TZ do
3: V ← create nodes z1, z2
4: if a = 1 then
5: E ← create edge (z1, z2)

Phase 2
1: Rε

z := {}
2: H := V
3: i := 1

4: while H 6= ∅ do
5: randomly select z ∈ H
6: Wi

sys := {z}
7: for each w ∈ Wi

sys do
8: Wi

sys :=Wi
sys ∪ {w′ ∈ H : ‖w − w′‖d < ε}

9: H := H \Wi
sys

10: Zi
sys := ∪w∈Wi

sys
Nε(w)

11: Rε
z := Rε

z ∪ {Zi
sys}

12: i := i+ 1
Phase 3

1: init graph LSR = (VLSR, ELSR) := ({}, {})
2: for each Zi

sys ∈ Rε
z do

3: wi
sys := 1

|Wi
sys|

∑
w∈Wi

sys
w

4: zisys := argminz∈Zi
sys
||z − wi

sys||d
5: VLSR ← create node zisys
6: for each edge e = (v1, v2) ∈ E do
7: find Zi

sys,Zj
sys containing v1, v2, respectively

8: ELSR ← create edge (zisys, zjsys)
return LSR

of points in Wi
sys identifies the first connected component

Zisys (line 2.10). We remove the set of allocated points
Wi
sys from the reference vertex set V (line 2.9) and continue

identifying new valid regions until we considered all the
points in V (line 2.4). At the end of this phase we obtain the
union of the valid regions Rεz = {Zisys}i.

In Phase 3, we build the LSR = (VLSR, ELSR). We first
compute the mean value wisys of all the points in each Wi

sys

(line 3.3). As the mean itself might not be contained in the
corresponding path-connected component we find the class
representative zisys ∈ Zisys that is the closest. The found
representative then defines a node vi ∈ VLSR representing
the valid region Zisys (lines 3.4 - 3.5). Lastly, we use the
set of edges E in the reference graph to infer the transition
maps f i,jz between the valid regions identified in Phase 2. We
create an edge in LSR if there exists an edge in E between
two vertices in V that were allocated to different valid regions
(lines 3.6− 3.8).

The parameter ε is calculated as a weighted sum of the
mean µ0 and the standard deviation σ0 of the distances ‖z1−
z2‖d among the no-action latent pairs (z1, z2, a = 0):

ε = µ0 + wε · σ0 (6)

where wε is a scaling parameter that can be tuned for the
task at hand. The rationale behind Eq. (6) is that ε should

be chosen such that similar states, captured in the no-action
pairs, belong to the same valid region, while states in the
action pairs are allocated to different valid regions.

Using the LSR and the trained VAE-model, we can gener-
ate one or more visual plans from start to goal state. To this
aim, the states are first encoded in the latent space and the
closest nodes in the LSR are found. Next, all shortest paths
in the LSR [22] between the identified nodes are retrieved.
Finally, the class representatives of the nodes belonging to
each shortest path compose the respective latent plan Pz ,
which is then decoded into the visual plan PI .

V. ACTION PROPOSAL NETWORK (APN)
The Action Proposal Network is used to predict the

specifics of an action ui that occurs between a latent pair
(zi, zi+1) from a latent plan Pz produced by the VFM.
We deploy a diamond-shaped multi layer perceptron and
train it in a supervised fashion on the latent action pairs
(z1, z2, ρ = (1, u)) obtained from the enlarged dataset Tz
as described below. The architecture details are reported in
the code repository2. Since the network only depends on the
action specifics u, it is easily adaptable to any task that fits
the assumptions listed in Sec. II.

The training dataset for the APN is derived from TI
but preprocessed with the encoder of the trained VFM. In
particular, for each training action pair (I1, I2, ρ = (1, u)) ∈
TI we first encode the inputs I1, I2 ∈ Isys and obtain the
parameters µi, σi of the approximate posterior distributions
q(z|Ii) = N(µi, σi), for i = 1, 2, given by the encoder
network in the VFM. We then sample 2S novel points
zs1 ∼ q(z|I1) and zs2 ∼ q(z|I2) for s ∈ {0, 1, . . . , S}.
This procedure results in S + 1 tuples (µ1, µ2, ρ) and
(zs1, z

s
2, ρ), 0 ≤ s ≤ S, where ρ = (1, u) was omitted

from the notation for simplicity. The set of all such low-
dimensional tuples then forms a training dataset for the APN.

Remark 2: It is worth remarking the two-fold benefit of
this preprocessing step: not only does it reduce the dimen-
sionality of the data but also enables enlarging it with novel
points by factor S + 1.

VI. EXPERIMENTS

In this section, we evaluate the performance of the pro-
posed approach both on a simulated box stacking task and
on a real robotic hardware considering a T-shirt folding
task. The purpose of the simulation task is not to improve
solutions for stacking boxes but to validate our approach in
a quantitative and automatic manner where the ground truth
is known. On the contrary, the T-shirt folding task evaluates
the method in a complex scenario where highly deformable
objects are involved and the ground truth is unknown.

A. Box stacking
The simulation setup, shown in Fig. 3 and developed

with the Unity engine [23] is composed of four boxes with
different textures that can be stacked in a 3× 3 grid (dotted

2https://github.com/visual-action-planning/
lsr-code

lines). A grid cell can be occupied by only one box at any
time and a box can be moved according to the stacking rules:
i) it can be picked only if there is no other box on top of it, ii)
it can be released only on the ground or on top of another
box inside the 3 × 3 grid. The action-specific information
u, as shown in Fig. 3, is a pair u = (p, r) of pick p and
release r coordinates in the grid modelled by the row and
column indices, i.e., p = (pr, pc) with pr, pc ∈ {0, 1, 2}, and
equivalently for r = (rr, rc).

Fig. 3: An example of an action u = (p, r) in the box stacking
task. The blue circle shows the picking location p = (1, 0), and the
green one the release position r = (2, 1).

To have a diverse dataset with variation, the position of
each box in a grid cell is generated by introducing ∼ 17%
noise along x and y axes, which is applied both when
generating an action and a no-action pair. Each image is
of dimension 256 × 256 × 3. For the VFM, we deploy a
VAE with a ResNet architecture [24] for the encoder and
decoder networks and a 64-dimensional latent space. It is
trained for 500 epochs on a training dataset TI composed
of 5000 tuples, 65% of which are action pairs and 35% no-
action pairs. We train a baseline VAE (VAE-b) without the
action term in Eq. (5), i.e. with γ = 0, and three action VAEs
(VAE-L1, VAE-L2, VAE-L∞) with the action term using
d = 1, 2,∞, respectively. Weights β and γ from Eqs. (3)
and (5) are increased over epochs following a scheduling
procedure starting from β = 0 and γ = 1. This encourages
the models to first learn to reconstruct the input images
and then gradually structure the latent space. The minimum
distance dm in Eq. (4) is set to 20, 5, and 2.5 in VAE-
L1, VAE-L2 and VAE-L∞, respectively. These values are
defined approximately as the average distance between the
latent action pairs encoded by the VAE-b.

Similarly, we train four APNs (APN-b, APN-L1, APN-
L2 and APN-L∞) on the latent training datasets Tz doubled
with S = 1 using VAE-b, VAE-L1, VAE-L2 and VAE-L∞,
respectively. The models were trained for 200 epochs and
we use the validation split (corresponding to 20% of the
data) to extract the best performing ones that are used in
the experiments. The complete details about VFM and APN
hyperparameters can be found in the configuration files in
the code repository2.

The designed task contains exactly 288 different grid
configurations, i.e., the specification of which box, if any,
is contained in each cell. Given a pair of such grid configu-
rations and the ground truth stacking rules, it is possible to
analytically determine whether or not an action is allowed
between them. This enables an automatic evaluation of
the structure of the latent space Zsys, the quality of the
visual plan PI generated by the VFM as well as of the
corresponding action plan Pu predicted by the APN. We

https://github.com/visual-action-planning/lsr-code
https://github.com/visual-action-planning/lsr-code

address these questions for all the action models and compare
them to the baseline one in the experiments presented below.

1) VAE latent space analysis: In this section we discuss
the influence of the action term (4) on the structure of
the latent space Zsys. Let each of the 288 possible grid
configuration represent a class. Note that each class con-
tains multiple latent samples from the dataset Tz but their
respective images look different because of the introduced
positioning noise. Let z̄c be the centroid of the class c defined
as the mean point of the training latent samples Tz belonging
to the class c. Let dic,intra be the intra-class distance defined
as the distance between a latent sample zi labeled with c and
the respective class centroid z̄c. Similarly, let dji,inter denote
the inter-class distance between the centroids z̄i and z̄j of
classes i and j.

Fig. 4 reports the mean values (bold points) and the
standard deviations (thin lines) of the inter-class (in blue)
and intra-class (in orange) distances for each class c ∈
{1, ..., 288}. We compare the distances calculated using the
latent training dataset Tz obtained from the baseline VAE
(top) and the action VAEs (bottom). Due to the space
constrains, we only report results obtained with metric L1 but
we observe the same behavior with L2 and L∞. In the case of
baseline VAE, we observe similar intra-class and inter-class
distances which implies that samples of different classes
are encoded close together in latent space and possible
ambiguities may arise when planning in it. On the contrary,
when using VAE-L1 we observe that the inter- and intra-
class distances approach the values 20 and 0, respectively,
which are imposed with the action term (4) on the action
pairs and on not classes themselves. This means that, even
when there exists no direct link between two samples of
different classes and thus the action term for the pair is never
activated, the VAE-L1 is able to encode them such that the
desired distances in the latent space are respected.

Fig. 4: Mean values (bold points) and standard deviations (thin
lines) of inter- (blue) and intra- (orange) distances for each class
calculated using a VAE trained with (bottom) and without (top)
action term.

In addition, we analyse the difference between the mini-
mum inter-class distance and the maximum intra-class dis-
tance for each class. The higher the value the better separa-
tion of classes in the latent space is achieved. When the latent
states are obtained using VAE-b we observe the difference to
be always negative with an average value of ≈ −8.3. On the
other hand, when calculated on points encoded with VAE-L1

Model All Any Trans.
VAE-b + LSR-d, ∀d 0 % 0 % 33.3 %
VAE-L1 + LSR-L1 100 % 100 % 100 %
VAE-L2 + LSR-L2 99.9 % 99.9 % 99.9 %

VAE-L∞ + LSR-L∞ 12 % 8.2 % 53.2 %

TABLE I: Visual foresight results for box stacking case study
comparing different metrics (best results in bold).

it becomes non-negative for 286/288 classes and its mean
value increases to ≈ 0.78. We therefore conclude that the
action term results in a better structured latent space Zsys.

2) LSR analysis: In this section we evaluate the quality of
visual plans produced by our LSR in the latent space Zsys.

We consider three LSRs (LSR-L1, LSR-L2, LSR-L∞)
that are built following Algorithm 1 with the corresponding
metrics using the latent training dataset Tz produced by
either the baseline VAE or the action VAEs. The parameter
ε from Eq. (6) is computed with a grid search on the
weight wε ∈ {−0.5, 0, 0.5, 1}. Given a LSR, we evaluate
its performance by measuring the quality of the visual plans
found in it between 1000 randomly selected start and goal
states from an unseen test dataset of 2500 images. To this
aim, a validity function2 is defined that checks if a given
visual action plan fulfills all the constraints determined by
the stacking rules.

In Table I we show the results obtained on LSRs built
with the training data from the baseline VAE (first row) and
the action VAEs (last three rows). In particular, we report
the percentage of cases when all the shortest paths in each
LSR are correct, when at least one of the proposed paths is
correct, and the percentage of correct single transitions.

Firstly, we observe significantly worse performance of the
LSRs when using the baseline VAE (first row) compared to
using the action VAEs (bottom three rows). This indicates
that VAE-b is not able to separate classes in Zsys and we
again conclude that the action term (4) needs to be included
in the VAE loss function in Eq. (5) in order to obtain distinct
valid regions Zisys.

Secondly, we observe that among the action VAEs, LSR-
L1 outperforms the rest and is comparable with LSR-L2,
while LSR-L∞ reports the worst performances. We hypoth-
esise that this is because L1 metric is calculated as the sum of
the absolute differences between the individual coordinates
and hence the points need to be evenly separated with respect
to all dimensions. On the contrary, L∞ separates points based
on only one dimension which leads to erroneous merges as
two points might be far apart with respect to one dimension
but very close with respect to the rest.

3) APN analysis: We evaluate the accuracy of action
predictions obtained by APN-b, APN-L1, APN-L2, and
APN-L∞ on an unseen test set consisting of 1491 action
pairs. As a proposed action can be binary classified as either
true or false we calculate the percentage of the correct
proposals for picking, releasing, as well as the percentage of
pairs where both pick and release proposals are correct. All
the models perform with 99% or higher accuracy evaluated

Fig. 5: An example of a visual action plan from the start (left) to the goal state (right) for the box stacking task produced using our
method (top) and a linear interpolation (bottom). Picking and releasing locations suggested by the APN are denoted with blue and green
circles, respectively, while the outcome of the VFM (VF row) and the APN (AP row) are indicated with a green checkmark for success
or a red X for failure. The APN succeeds using the path from our method and fails given the erroneous states of the linear interpolation.

on 10 different random seeds determining the training and
validation sets2. This is because the box stacking task results
in an 18-class classification problem for action prediction
which is simple enough to be learned from any of the VAEs.

Finally, we show the inadequacy of linear interpolation for
the latent space planning. A linear visual path is obtained by
uniformly sampling n points along the line segment between
given zstart and zgoal where n equals the length of the
shortest path retrieved from the LSR. An example of a linear
visual path produced by VAE-L1 is shown in the bottom
row of Fig. 5. For each of the 1000 start and goal states,
decoding the linear paths with the VFM results in only
failing transitions. In addition, invalid states are obtained
where boxes of the same color are present multiple times
and boxes exhibit invalid states. On the contrary, a visual
plan PI produced by LSR-L1 using VAE-L1 is shown in
the top row of Fig. 5 and consists of only valid states and
actions. Moreover, the figure shows that the APN generalizes
to the latent no-action pairs even though it is trained on the
action pairs only.

B. T-shirt folding

A Baxter robot, equipped with a Primesense RGB-D
camera mounted on its torso, is used to fold a T-shirt in
different ways as shown in Fig. 6 and in the accompanying
video. All results are also reported in detail on the website1.

For this task, a dataset TI containing 1283 pairs is
collected. Each image has size 256 × 256 × 3, while the
action specific information u is defined as u = (p, r, h)
and is composed of picking coordinates p = (pr, pc),
releasing coordinates r = (rr, rc) and picking height h.
The values pr, pc, rr, rc ∈ {0, . . . , 255} correspond to image
coordinates, while h ∈ {0, 1} is either the height of the table
or a value measured from the RGB-D camera to pick up only
the top layer of the shirt.

Note that the latter is a challenging task [25] which is
not in the scope of this work. The dataset TI is collected
by manually selecting pick and release points on images
showing the current T-shirt configuration, and recording
the corresponding action. No-action pairs are generated by
slightly perturbing the cloth appearance, as shown in the
video, which results in 37% of no-action pairs in TI .

As shown in Fig. 6, we perform a re-planning step after
each action execution to account for possible uncertainties.
The current cloth state is then considered as a new start state
and a new visual action plan is produced until the goal state
Igoal is reached or the task is terminated. If multiple plans
are generated, a human operator selects the one to execute.

Compared to the box stacking task we use a larger version
of the ResNet architecture for the VFM but keep the 64-
dimensional latent space. Following the model notation from
Sec. VI-A, we train a baseline VAE which we use to
determine the minimum distance dm used in the action
term (4) for the action VAEs. For the shirt folding task, these
are set to 13.5, 3.5 and 2 for VAE-L1, VAE-L2 and VAE-
L∞, respectively. The APN models are trained using the
same architecture as in the box stacking task and on training
datasets enlarged with S = 1. Hyperparameters are similar
to the box stacking experiment and can be found in the code
repository2.

1) APN Analysis: We evaluate the performance of the
APN models on 5 random seeds on a test split consisting of
104 action pairs. For each seed we reshuffle all the collected
data and create new training, validation and test splits. The
action coordinates p and r are first scaled to the interval
[0, 1], and then standardised with respect to the mean and
the standard deviation of the training split.

Table II reports mean and standard deviation of the Mean
Squared Error calculated across the different random seeds.
We separately measure the error obtained on picking pre-
dictions, releasing predictions, and the total error on the
predictions of the whole action u = (p, r, h). We observe a
higher error when using VAE-b which again indicates that the
latent space lacks structure if the action term (4) is excluded
from the loss function. The best performance is achieved by
APN-L1 which corroborates the discussion from Sec. VI-A
about the influence of L1 metric on the latent space.

2) Execution Results: The performance of the entire
system cannot be evaluated in an automatic manner as in
the box stacking task. We therefore choose five novel goal
configurations and perform the folding task five times per
configuration on each framework F-Ld that uses VAE-Ld,
APN-Ld, and LSR-Ld with d = 1, 2,∞. Weights wε are
experimentally set to 0.8, 0.2, and −0.3, respectively. In

Fig. 6: Execution of the folding task with re-planning. On the left, a set of initial visual action plans reaching the goal state is proposed.
After the first execution, only one viable visual action plan remains.

Model Pick Release Total
APN-b 2.12± 0.34 2.21± 0.13 4.47± 0.39

APN-L1 1.86 ± 0.11 2.03 ± 0.07 3.96 ± 0.16
APN-L2 2.06± 0.14 2.05± 0.07 4.22± 0.2
APN-L∞ 1.98± 0.13 2.16± 0.1 4.3± 0.16

TABLE II: The error of action predictions obtained in the folding
task on APN models with different metrics (best results in bold).

order to remove outliers present in the real data, a final
pruning step is added to Algorithm 1 which removes nodes
from the VLSR that contain less than 6 training samples.

The results are shown in Table III, while all execution
videos, including the respective visual action plans, are avail-
able on the website1. We report the total system success rate
with re-planning, the percentage of correct single transitions,
and the success of any visual plan and action plan from start
to goal. Framework F-L1 finds at least one visual action plan
that makes the correct prediction, however, the execution
of the action is not perfect. We therefore observe a lower
overall system performance as the re-planning can result in
a premature termination. Similar to the box-stacking task,
results hint that F-L1 is more suitable for executing the
folding task while F-L∞ performs worst.

Framework Syst. Trans. VFM APN
F-L1 80% 90% 100% 100%
F-L2 40% 77% 60% 60%
F-L∞ 24% 44% 56% 36%

TABLE III: Results (best in bold) for executing visual action plans
on 5 folding tasks (each repeated 5 times). Different metrics are
compared.

Finally, a re-planning example is shown in Fig. 6 where
a subset of the proposed visual action plans is shown (left).
As the goal configuration does not allude to how the sleeves
are to be folded, the LSR suggests all paths it identifies.
After the first execution, the re-planning (right) generates in
a single plan that leads from start to goal state.

VII. CONCLUSIONS AND FUTURE WORK

In this work, we addressed the problem of visual action
planning. We proposed to build a Latent Space Roadmap
which is a graph-based structure in a low-dimensional latent
space capturing the latent transition dynamics in a data-
efficient manner. Our method consists of a Visual Foresight

Module, generating a visual plan from given start and goal
states, and an Action Proposal Network, predicting the
corresponding action plan. We showed the effectiveness of
our method on a simulated box stacking task as well as a T-
shirt folding task, requiring deformable object manipulation
and performed with a real robot. As future work, we plan
to extend the scope of the LSR to more domains such as
Reinforcement Learning.

REFERENCES
[1] S. J. Rosenschein, “Formal theories of knowledge in ai and robotics,” New

generation computing, vol. 3, no. 4, pp. 345–357, 1985.
[2] S. Thrun, D. Fox, et al., “Probabilistic methods for state estimation in

robotics,” in Workshop SOAVE, vol. 97, 1997, pp. 195–202.
[3] T. Lozano-Pérez and L. P. Kaelbling, “A constraint-based method for solving

sequential manipulation planning problems,” in IEEE/RSJ Int. Conf. on
Intelligent Robots and Systems, IEEE, 2014, pp. 3684–3691.

[4] L. P. Kaelbling and T. Lozano-Pérez, “Integrated task and motion planning
in belief space,” Int. J. Robot. Res., vol. 32, no. 9-10, pp. 1194–1227, 2013.

[5] S. M. LaValle, Planning Algorithms. Cambridge U.K.: Cambridge University
Press, 2006.

[6] C. Finn and S. Levine, “Deep visual foresight for planning robot motion,” in
IEEE Int. Conf. Robot. Autom., 2017, pp. 2786–2793.

[7] M. Tang, T. Wang, et al., “I-cloth: Incremental collision handling for gpu-
based interactive cloth simulation,” ACM Trans. on Graphics, vol. 37, no. 6,
pp. 1–10, 2018.

[8] T. Lesort, N. Dıéaz-Rodrıéguez, et al., “State representation learning for
control: An overview,” Neural Net., vol. 108, pp. 379–392, 2018.

[9] S. Wold, K. Esbensen, et al., “Principal component analysis,” Chemometrics
and intelligent laboratory systems, vol. 2, no. 1-3, pp. 37–52, 1987.

[10] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” Int. Conf.
Learn. Represent., 2015.

[11] D. J. Rezende, S. Mohamed, et al., “Stochastic backpropagation and approxi-
mate inference in deep generative models,” in Int. Conf. Mach. Learn., 2014,
pp. 1278–1286.

[12] I. Goodfellow, J. Pouget-Abadie, et al., “Generative adversarial nets,” in
Advances in neural information processing systems, 2014, pp. 2672–2680.

[13] V. Dumoulin, I. Belghazi, et al., “Adversarially learned inference,” in Int.
Conf. Learn. Represent., 2017.

[14] B. Ichter and M. Pavone, “Robot Motion Planning in Learned Latent Spaces,”
IEEE Robot. Autom. Lett., vol. 4, no. 3, pp. 2407–2414, 2019.

[15] A. Nair, D. Chen, et al., “Combining self-supervised learning and imitation
for vision-based rope manipulation,” in IEEE Int. Conf. Robot. Autom., 2017,
pp. 2146–2153.

[16] A. Srinivas, A. Jabri, et al., “Universal planning networks,” in ICML, 2018.
[17] D. Hafner, T. Lillicrap, et al., “Learning latent dynamics for planning from

pixels,” arXiv preprint arXiv:1811.04551, 2018.
[18] A. Wang, T. Kurutach, et al., “Learning robotic manipulation through visual

planning and acting,” in Robotics: Science and Systems, 2019.
[19] M. Rudolph, B. Wandt, et al., “Structuring autoencoders,” in IEEE Int. Conf.

on Computer Vision Workshops, 2019.
[20] I. Higgins, L. Matthey, et al., “β-vae: Learning basic visual concepts with a

constrained variational framework,” Int. Conf. Learn. Represent., 2017.
[21] C. P. Burgess, I. Higgins, et al., “Understanding disentangling in β-vae,”

arXiv preprint arXiv:1804.03599, 2018.
[22] A. A. Hagberg, D. A. Schult, et al., “Exploring Network Structure, Dynamics,

and Function using NetworkX,” in Python in Science Conf., 2008, pp. 11–15.
[23] Unity Technologies, Unity. [Online]. Available: https://unity.com.
[24] K. He, X. Zhang, et al., “Deep residual learning for image recognition,” in

IEEE Conf. on Computer Vision and Pattern Recognition, 2016, pp. 770–778.
[25] D. Seita, A. Ganapathi, et al., “Deep imitation learning of sequential fabric

smoothing policies,” arXiv preprint arXiv:1910.04854, 2019.

https://unity.com

	Introduction and Related Work
	Problem Statement and Notation
	An overview of our approach
	Training Dataset
	System Overview

	Visual Foresight Module (VFM)
	Latent state space
	Latent Space Roadmap (LSR)

	Action Proposal Network (APN)
	Experiments
	Box stacking
	VAE latent space analysis
	LSR analysis
	APN analysis

	T-shirt folding
	APN Analysis
	Execution Results

	Conclusions and Future Work

